mirror of
https://github.com/m-lamonaca/dev-notes.git
synced 2025-06-09 03:07:13 +00:00
remove mkdocs specific syntax
This commit is contained in:
parent
8d08c1964f
commit
8026e1465b
77 changed files with 1128 additions and 1128 deletions
|
@ -2,7 +2,7 @@
|
|||
|
||||
## MOST IMPORTANT ATTRIBUTES ATTRIBUTES
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
array.ndim # number of axes (dimensions) of the array
|
||||
array.shape # dimensions of the array, tuple of integers
|
||||
array.size # total number of elements in the array
|
||||
|
@ -15,7 +15,7 @@ array.data # buffer containing the array elements
|
|||
Unless explicitly specified `np.array` tries to infer a good data type for the array that it creates.
|
||||
The data type is stored in a special dtype object.
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
var = np.array(sequence) # creates array
|
||||
var = np.asarray(sequence) # convert input to array
|
||||
var = np.ndarray(*sequence) # creates multidimensional array
|
||||
|
@ -33,7 +33,7 @@ var = np.linspace(start, stop, num_of_elements) # step of elements calculated b
|
|||
|
||||
## DATA TYPES FOR NDARRAYS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
var = array.astype(np.dtype) # copy of the array, cast to a specified type
|
||||
# return TypeError if casting fails
|
||||
```
|
||||
|
@ -72,7 +72,7 @@ array_1 `/` array_2 --> element-wise division (`[1, 2, 3] / [3, 2, 1] = [0.33, 1
|
|||
|
||||
## SHAPE MANIPULATION
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.reshape(array, new_shape) # changes the shape of the array
|
||||
np.ravel(array) # returns the array flattened
|
||||
array.resize(shape) # modifies the array itself
|
||||
|
@ -84,7 +84,7 @@ np.swapaxes(array, first_axis, second_axis) # interchange two axes of an array
|
|||
|
||||
## JOINING ARRAYS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.vstack((array1, array2)) # takes tuple, vertical stack of arrays (column wise)
|
||||
np.hstack((array1, array2)) # takes a tuple, horizontal stack of arrays (row wise)
|
||||
np.dstack((array1, array2)) # takes a tuple, depth wise stack of arrays (3rd dimension)
|
||||
|
@ -94,7 +94,7 @@ np.concatenate((array1, array2, ...), axis) # joins a sequence of arrays along a
|
|||
|
||||
## SPLITTING ARRAYS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.split(array, indices) # splits an array into equall7 long sub-arrays (indices is int), if not possible raises error
|
||||
np.vsplit(array, indices) # splits an array equally into sub-arrays vertically (row wise) if not possible raises error
|
||||
np.hsplit(array, indices) # splits an array equally into sub-arrays horizontally (column wise) if not possible raises error
|
||||
|
@ -104,7 +104,7 @@ np.array_split(array, indices) # splits an array into sub-arrays, arrays can be
|
|||
|
||||
## VIEW()
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
var = array.view() # creates a new array that looks at the same data
|
||||
# slicing returns a view
|
||||
# view shapes are separated but assignment changes all arrays
|
||||
|
@ -112,7 +112,7 @@ var = array.view() # creates a new array that looks at the same data
|
|||
|
||||
## COPY()
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
var = array.copy() # creates a deep copy of the array
|
||||
```
|
||||
|
||||
|
@ -136,7 +136,7 @@ iteration on first index, use .flat() to iterate over each element
|
|||
|
||||
Functions that performs element-wise operations (vectorization).
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.abs(array) # vectorized abs(), return element absolute value
|
||||
np.fabs(array) # faster abs() for non-complex values
|
||||
np.sqrt(array) # vectorized square root (x^0.5)
|
||||
|
@ -193,7 +193,7 @@ np.logical_xor(x_array, y_array) # vectorized x ^ y
|
|||
|
||||
## CONDITIONAL LOGIC AS ARRAY OPERATIONS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.where(condition, x, y) # return x if condition == True, y otherwise
|
||||
```
|
||||
|
||||
|
@ -202,7 +202,7 @@ np.where(condition, x, y) # return x if condition == True, y otherwise
|
|||
`np.method(array, args)` or `array.method(args)`.
|
||||
Boolean values are coerced to 1 (`True`) and 0 (`False`).
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.sum(array, axis=None) # sum of array elements over a given axis
|
||||
np.median(array, axis=None) # median along the specified axis
|
||||
np.mean(array, axis=None) # arithmetic mean along the specified axis
|
||||
|
@ -220,21 +220,21 @@ np.cumprod(array, axis=None) # cumulative sum of the elements along a given axi
|
|||
|
||||
## METHODS FOR BOOLEAN ARRAYS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.all(array, axis=None) # test whether all array elements along a given axis evaluate to True
|
||||
np.any(array, axis=None) # test whether any array element along a given axis evaluates to True
|
||||
```
|
||||
|
||||
## SORTING
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
array.sort(axis=-1) # sort an array in-place (axis = None applies on flattened array)
|
||||
np.sort(array, axis=-1) # return a sorted copy of an array (axis = None applies on flattened array)
|
||||
```
|
||||
|
||||
## SET LOGIC
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.unique(array) # sorted unique elements of an array
|
||||
np.intersect1d(x, y) # sorted common elements in x and y
|
||||
np.union1d(x, y) # sorte union of elements
|
||||
|
@ -245,7 +245,7 @@ np.setxor1d() # Set symmetric differences; elements that are in either of the a
|
|||
|
||||
## FILE I/O WITH ARRAYS
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.save(file, array) # save array to binary file in .npy format
|
||||
np.savez(file, *array) # save several arrays into a single file in uncompressed .npz format
|
||||
np.savez_compressed(file, *args, *kwargs) # save several arrays into a single file in compressed .npz format
|
||||
|
@ -266,7 +266,7 @@ np.loadtxt(file, dtype=float, comments="#", delimiter=None)
|
|||
|
||||
## LINEAR ALGEBRA
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.diag(array, k=0) # extract a diagonal or construct a diagonal array
|
||||
# K: {int} -- k>0 diagonals above main diagonal, k<0 diagonals below main diagonal (main diagonal k = 0)
|
||||
|
||||
|
@ -290,7 +290,7 @@ np.linalg.lstsq(A, B) # return the least-squares solution to a linear matrix eq
|
|||
|
||||
## RANDOM NUMBER GENERATION
|
||||
|
||||
```py linenums="1"
|
||||
```py
|
||||
np.random.seed()
|
||||
np.random.rand()
|
||||
np.random.randn()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue