# Java ```java //single line comment /* multi line comment */ /** javaDoc docstring */ ``` Java element | Case -------------|------------ package | lowercase class | PascalCase variable | camelCase method | camelCase ## Basics Package definition: `package ;` ### Main Method (entry point of algorithm) ```java public static void main (String[] args) { //code here } ``` ### Variable Assignment `Type variable_1 = , ..., variable_n = ;` ### Constant Definition (outside of main method/function) ```java public static final Type CONSTANT_NAME = value; public static final double PI = 3.14159; //example ``` ### Constant Definition (inside main method/function) ```java final Type CONSTANT_NAME = value; final double PI = 3.14159; //example ``` ### Screen Output ```java System.out.println(output_1 + _ + output_n); //newline at every invocation System.out.print(output_1 + _ + output_n); ``` ### Output Formatting [String.format() Examples](https://dzone.com/articles/java-string-format-examples) ```java System.out.printf("string %..", variable); System.out.println(String.format(format, args)); ``` Methods inherited from C. The value pf the variable substitutes %. `%d` int, `%f` float, `%c` char, `%s` string, `%e` scientific notation. `%digitNumber.decimalDigitNumber` specifies the space occupied by the output. `NumberFormat` class is used to format a number output. ```java Locale locale = new Locale("language", "country"); // as defined by IETF lang tag, RCF 5646, RCF 4647 NumberFormat fmt = NumberFormat.getCurrencyInstance(locale); // format a number as a currency based on a Locale fmt.format(number); // apply format to a number, returns a String ``` ## Keyboard Input ```java import java.util.Scanner; //package import Scanner scanner = new Scanner(System.in); //Scanner obj init scanner.useDelimiter("delimitatore"); //delimiter setting scanner.close() //closing of Scanner, releases memory int variable_int_1 = scanner.nextInt(); //takes integer number String string_1 = scanner.nextLine(); //takes line of text (\n ends line) String string_1 = scanner.next(); //takes text (space ends word) double variable_double_1 = scanner.nextDouble(); //takes double decimal number boolean variable_bool = scanner.nextBoolean(); //takes boolean value //(TRUE, FALSE, true, false, True, False) ``` The `nextLine()` method imports from the **last** `\n`. Thus when switching to a different input method is necessary to call `nextLine()` one more time to avoid errors. ### Primitive Types ```java TYPE WRAPPER SIZE MIN_VALUE MAX_VALUE int Integer -2147483648 2147483647 byte Byte 8 bit -128 127 short Short 16 bit -32768 32767 long - L Long 32 bit -9223372036854775808 9223372036854775807 float - f Float 32 bit 1.4 * 10^-45 3.4028235 * 10^38 double - d Double 64 bit 4.9 * 10^-324 1.7976931348623157 * 10^308 char Character 16 bit U+0000 (0) U+FFFF (65535) boolean Boolean false true ``` Digits can be separated by _ (underscore). If not specified int & double are the default types. ### Floating-Point numbers & Precision Calcs Don't use `==` or `!=` to confront floating value numbers since they use approximation or have a lot of digits. It's best to check if the difference between two numbers is small enough. For high precision calcs is best to use `BigDecimal`. ### Type Conversion (casting) & Type checking ```java Type variable = (Type) ; // convert to other Type var instanceof Type; // true if var is an instance of Type ``` ### Wrapper Classes Every primitive type has a corresponding wrapper class. Wrapper classes permits the creation of an object with the same type of a primitive type but with added methods and constants. ```java WrapperClass objectName = new WrapperClass(primitiveValue); //declaration WrapperClass objectName = primitiveValue; //shortened declaration Type variable = object.Value(); //unboxing Type variable = object; //autoboxing Type variable = new WrapperClass(primitiveValue); //automatic unboxing WrapperClass.MIN_VALUE //constant holding min possible value of wrapper class WrapperClass.MAX_VALUE //constant holding man possible value of wrapper class WrapperClass.parseClasseWrapper(string); // converts the tring to the wrapper class, NumberFOrmatException on error WrapperClass.toString(primitive); // converts the wrapper class value to a string ``` ### String & Char ```java String string = "text"; //strings always in double quotes char character = 'C'; //chars always in single quotes ``` ### Special Characters Escape Character | Character -------------------|----------------------- `\n` | new line `\t` | tab `\b` | backspace `\r` | carriage return `\f` | form feed `\\` | backslash `\"` | double quote `\u<4_hex_digits>` | unicode characters `\x` | hexadecimal characters `\o` | octal characters `\` | ASCII character ### String Concatenation The value of the variable is appende to the string literal. `"text" + variable` String are immutable. Concatenation creates a new string. ### String Conversion to Number ```java double d = Double.parseDouble(string); float f = Float.parseFloat(string); int i = integer.parseInt(string); ``` ### String Class Methods ```java string.equals(otherString); // returns TRUE if the strings are equal string.equalsIgnoreCase(otherString); // returns TRUE if the strings are equals ignoring the case string.charAt(index); // returns the character at position INDEX string.startsWith(otherString); // returns TRUE if string starts with otherString string.endsWith(otherString) // returns TRUE if string ends with otherString string.concat(otherString); // concatenation of two strings string.indexOf(otherString); // returns index of the first occurrence of other string string.lastIndexOf(otherString); // returns index of the last occurrence of other string string.length(); // returns the length of the string string.toLowerCase(); // transform the string in uppercase characters string.toUpperCase(); // transform the string in lowercase characters string.replace(character, newCharacter); // substitutes character with newCharacter string.replaceAll(regex, replacement); string.substring(start, end); // returns a substring starting as START and ending at END (included) string.trim(); // removes spaces before and after the string string.Split(delimiter); // return a String[] generated by splitting string at the occurrence of delimiter string.compareTo(otherString); ``` `compareTo()` returns a number: - `-1` if `string` precedes `otherString` - `0` if the strings are equal - `1` if `otherString` precedes `string` `compareTo()` compares the lexicographic order (based on UNICODE). To compare in alphabetical order both strings must have the same case. ### Mathematical Operations ```java Math.PI // value of pi Math.E // value of e Math.abs(x); //absolute value of x Math.acos(x); Math.asin(x) Math.atan(x) Math.atan2(y, x) Math.ceil(x) Math.cos(x) Math.exp(x); //e^x Math.floor(x) Math.log(x) Math.max(x, y) Math.min(x, y) Math.pow(x, y); //x^y Math.random() Math.rint(x) Math.round(x) Math.sin(x) Math.sqrt(x); //square root, x^(1/2) Math.tan(x) Math.toDegrees(rad) Math.toRadians(deg) ``` ### Arithmetic Operators operator | operation -----------|---------- a `+` b | sum a `-` b | subtraction a `*` b | multiplication a `/` b | division a `%` b | modulo a`++` | increment a`--` | decrement ### Comparison Operators operator | operation -----------|---------- a `==` b | equal to a `!=` b | not equal to a `>` b | greater than a `<` b | lesser than a `>=` b | greater than or equal to a `<=` b | lesser than or equal to ### Logical Operators operator | operation -----------|---------- `!`a | logical negation (**NOT**) a `&&` b, | logical **AND** a `||` b, | logical **OR** ### Bitwise Operators operator | operation -----------|---------- `~`a | bitwise **NOT** a `&` b | bitwise **AND** a `|` b | bitwise **OR** a `^` b | bitwise **XOR** a `<<` b | bitwise left shift a `>>` b | bitwise right shift ### Compound Assignment Operators operator | operation -----------|---------- a `+=` b | a = a + b a `-=` b | a = a - b a `*=` b | a = a * b a `/=` b | a = a / b a `%=` b | a = a % b a `&=` b | a = a & b a `|=` b | a = a | b a `^=` b | a = a ^ b a `<<=` b | a = a << b a `>>=` b | a = a >> b ### Operator Precedence 1. unary operators `++` , `--`, `!` 2. binary arithmetic operators `*`, `/`, `%` 3. binary arithmetic operators `+`, `-` 4. boolean operators `<`, `>` , `<=`, `>=` 5. boolean operators `==`, `!=` 6. bitwise operator `&` 7. bitwise operator `|` 8. logical operator `&&` 9. logical operator `||` ### Short Circuit Evaluation If in `(expressionA || expressionB)` expressionA results `true`, Java returns `true` without evaluating expressionB. If in `(expressionA && expressionB)` expressionA results `false`, Java returns `false` without evaluating expressionB. Full evaluation can be forced using `&` and `|`. ## Decision Statements ### `If Else` ```java if (condition) { //code here } else { //code here } ``` ### `If, Else If, Else` ```java if (condition) { //code here } else if (condition) { //code here } else if (condition){ //code here } else { //code here } ``` ### Ternary Operator `(condition) ? istruzione_1 : istruzione_2;` if condition is `true` executes instruction1 otherwise executes instruction2. ### `Switch` ```java switch (matchExpression) { case matchingPattern: //code here break; case matchingPattern: //code here break; default: //code here break; } ``` Omitting the `break` keyword causes multiple branches to execute the same code. ## Loop Statements ### `While` Loop ```java while (condition) { //code here } ``` ### `Do While` Loop ```java do { //code here } while (espressione_booleana); ``` Loop body executed *at least* one time ### `For` Loop ```java for (initializer; condition; iterator) { //code here } ``` ### `Foreach` Loop ```java for (Type variable : iterable){ //code here } ``` ### Multiple iterators in `For` Loop ```java for (initializer1, initializer2; condition; iterator1, iterator2) { //code here } ``` The iterator declared in the for is a local variable and can be used only in the for loop block. ### Forced Program Termination `System.exit(returnedValue);` forces the termination of the program execution returning a specified value. ### Assertion Checks If the assertion check is enabled (`java -ebableassetrions programName`) the execution of the algorithm is terminated if an assertion fails. Assertions can be used to check if a variable has a wanted value in a precise point in the code (Sanity Check). ```java assert ; ``` ## Static Methods Static methods are not bound to an *instance* of a class but they act on the class *itself*. ### Static Void Method Definition ```java static void methodName (parameters) { //code here } ``` ### Static Method Definition ```java static tipo_metodo methodName (parameters) { //code here return ; //returned type MUST match method type } ``` ### Static Method Invocation ```java methodName(arguments); ClassName.methodName(arguments); //if method is used outside its class ``` ## Array ## Array Declaration ```java Type[] arrayName = new Type[dimension]; Type arrayName[] = new Type[dimension]; arrayName.length //length of the array ``` Its possible to break the declaration in two lines ```java Type[] arrayName; arrayType = new Type[dimension]; ``` ## Array Creation by Initialization `Type[] arrayName = {value1, value2, ...}` Array dimension is determined by the number of values. ### Arrays as method parameters ```java static Type methodName (Type[] arrayName) { //code here } methodName(arrayName); //[] omitted when passing array as argument ``` Single elements of an array can be passed to a method. Array dimension can be omitted. ### Equality of Arrays As arrays ar object in Java, the operators `==` and `!=` confront the memory address of the arrays. Array contents must be confronted by looping through the array. ### Methods returning Arrays ```java static Type[] methodName (parameters) { Type[] arrayName = new Type[dimension]; //array declaration //array valorization return arrayName; } ``` ## Variable numbers of parameters in a method ```java static Type methodName (parameters, tipo[] ArrayName) { //code here } ``` It's not necessary to specify a dimension of the array, it's determined by Java ### Multi-Dimensional Arrays ```java Type[]...[] arrayName = new Type[dimension1]...[dimensionN]; Type arrayName[]...[] = new Type[dimension1]...[dimensionN]; ``` ### Multi-Dimensional Arrays as parameters ```java static Type methodName (Type[]...[] ArrayName) { //code here } ``` ### Methods returning multi-dimensional arrays ```java static Type[]...[] methodName (parameters) { Type[]...[] array = new Type[dimension1]...[dimensionN]; //array valorization return array; } ``` ### Array Length of multi-dimensional arrays ```java array.length //row length array[rowIndex].length //column length ``` ### Irregular Table Visualization ```java static void viewTable (Type[][] matrix){ for (int row = 0; row < matrix.length; row++){ //run through the rows for (int column = 0; column < arrayName[row].length; column++){ //run through the columns System.put.print(arrayName[row][column] + "\t"); //print item followed by a tab } System.out.println(); //newline after each matrix row } } ``` ## Recursion Guidelines The core of the recursion must be constituted by a *conditional instruction* that permits to handle the cases based on the method argument. *At least one* of the alternatives must contain a recursive call to che method. The call must resolve reduced version of the task handled by the method. *At leats one* of the alternatives must not contain a recursive call or it must produce a value that constitutes a base case or an arrest value. ## Exception Handling An **Exception** is an object used to signal an anomalous event. **Checked Exceptions** must be handled in a catch meanwhile **Unchecked Exceptions** do not need to be cached like `RuntimeException`. Unchecked exceptions usually mean that there is an error in the logic of the program that must be fixed. ### `Try-Catch-Finally` This construct permits to monitor what happens in a block of code and to specify what to do in case of errors (*exceptions*). ```java try { //monitored code } catch (SpecificException e) { //in case of errors use this } catch (SpecificException1 | SpecificException2 | ... | SpecificExceptionN e) { //in case of errors use this } catch (Exception e) { //in case of error use this e.getMessage(); // access to Exception error message } finally { //code executed anyways } ``` A `try-catch` construct can handle multiple exceptions at once. Every `catch` is analyzed in sequence and is executed the first to happen thus is best to leave a generic exception last. ### Try with Resources ```java try ( //resource definition ){ //dangerous code } catch (Exception e) { //in case of error use this } finally { //code executed anyway } ``` ### `Throw` & `Throws` The `throw` keyword is used to generate a custom exception in a point of the code. `throw` is used together with an exception type. ```java Type methodName(parameters) { if (condition) { throw new Exception("error message"); } } ``` The `throws` keyword is used to indicate what exception Type may be thrown by a method. `throws` is used together with a exception class. It's used to send the exception to the method caller. ```java Type methodName(parameters) throws ExceptionClass { if (condition) { throw new SpecificException("error message"); } } ``` ### Defining Personalized Exceptions A user-defined exception has to inherit from `Exception` or one of it's descendants. ```java public class CustomException extends Exception { public CustomException(){ super("Base Message"); // ese Exception constructor } public CustomException(string message){ super(message); } // CustomException inherits getMessage() from Exception } ``` ## Object Oriented Programming ### Access Modifiers `public` variables, methods, classes are usable outside of class of definition. `private` variables, methods, classes are *only* usable inside class of definition. `protected` variables, methods, classes can be accessed *only* by defining class, it's descendants and the package. `final` classes and methods cannot be extended or overridden. If not specified variables, methods and classes are *only* accessible from the same package. ### Instance Method Definition ```java Type methodName (parameters) { //code here } ``` ### `Void` Instance Method ```java void methodName (parameters) { //code here } ``` ### Class Definition ```java public class ClassName { //instance variables declaration //instantiation block { // this code is called before the constructor when an object is instantiated } //constructors definition // getters & setters // override of superclass' methods //instance methods definition } ``` ### `This` identifier `this.instanceVariable` identifies the instance variable It's possible to use `this` to distinguish between instance and static variables with the same name. ### Classes and Reference Addresses A an instance of a class doesn't contain an object of that class but a memory address in which the object is memorized. operations of assignment (`=`) and confront (`==`) act on the memory address and not on the values of the objects. To confront object is necessary to define a `equals()` method that checks if the values of the object attributes are equal. ### Constructors Constructors are special methods that are invoked with the `new` operator when an object is instantiated. Constructors assign the starting values of the object attributes. If a constructor id defined Java doesn't create the default constructor. ```java class ClassName (){ //attributes declaration (aka instance variables) //constructor public ClassName(parameters){ this.attribute = value; //value is passed to the constructor at obj instantiation } public ClassName(parameters, otherParameters){ this(parameters); // invoke other constructor for subset of parameters, must be FIRST INSTRUCTION this.attribute = value; // deal with the remaining parameters } } ``` ### Static Variables `Type staticVariable = value;` Static variables are shared by all objects of a class and all static method can act upon them. Static variable do not belong to the class objects. ### Getters & Setter Methods ```java public void setAttribute(Type attribute){ this.attribute = attribute; } public Type getAttribute(){ return this.attribute; } ``` ### `ToString()` Method Automatically returns a string if the object is directly called in a print method. ```java @Override Public String toString(){ return "string-representation-of-object" } ``` ### Static Methods in Classes Static methods are used to effectuate operations not applied to objects. Outside of the class of definition that are invoked with ClassName.methodName() Static method **cannot** act on instance variables. ### Method Overloading A class can have multiple methods with the same name given that each method has a different number or type of parameters (different method *signature*). ### Inheritance & Method Overriding Child classes inherit all methods and attributes from parent class. Child methods can *override* parent methods to adapt their functionality. Overriding and overridden classes **must** have the same name. A child class can inherit from *only* one parent class. Child class **must** implement a constructor that instantiates the parent (super) class. `super()` instantiates the superclass of the child class. ```java class ChildClass extends ParentClass{ public ChildClass(parentParameters, childParameters){ super(parentParameters); // if omitted super() is calls (parent's default constructor) // assignments of child attributes } //calls overrides parent class (must have same name) @Override Type methodName(parameters){ //code here } super().methodName(parameters); // calls the parent's method } ``` An overridden method that returns a `ParentClass` can be overridden to return a `ChildClass`. This is the only case in which an overridden method can change the returned type. An overridden method can change the access modifier as long as the new modifier is more "permissive". A `ParentClass` type can contain a `ChildClass` object. This is useful for using collections and arrays of objects. ```java ParentClass objectName = ChildClass(); // upcast (ChildClass)ParentClassObject; // downcast ``` ### Abstract Classes & Abstract Methods An Abstract Class is a particular class that contains an Abstract Method. This type of class cannot be instantiated but is used leave the specific implementation of some of it's methods to extending classes. Abstract classes are marked by the `abstract` keyword. An abstract method is a method without implementation. The methods **must** be `public` and marked with the `abstract` keyword. ```java //abstract class abstract class className{ //attributes here //constructor here //getters & setters here public abstract Type methodName(); //no method code } ``` ### Interfaces An Interface is a class with *only* abstract methods. An interface has more flexibility than an abstract class. Interfaces are used to set requirements for child classes without specifying how to satisfy those requirements since it's methods will be implemented in child classes. An Interface is marked by the `interface` keyword. If an implementing class implements only `some` of the interface's method than the class **must be abstract**. Interfaces' methods are always `abstract` and `public`, no need for the keyword. Interfaces' attributes are always `public static final`, no need for the keyword. A class can implement *more than one* Interface. ```java public interface InterfaceName{ //attributes here Type methodName(); //no method code } // interfaces can extend interfaces public interface OtherInterface extends InterfaceName { //attributes here Type methodName(); // inherited from extended interface Type otherMethod(); // defined in the interface } class ClassName implements Interface1, Interface2 {...} ``` Types of Interfaces: - Normal (multiple methods) - Single Abstract Method (`@FunctionalInterface`, used with *Lambda Expressions*) - Marker (Empty, *no methods*) Since Java 1.8 interfaces can implements also `static` methods. ### Enumerations Enums are used to restrict the type of data to a set of the possible constant values. Enums are classes which constructor is private by default. It's still possible to create a custom constructor to add values. ```java enum enumName { value1, value2, ... , valueN; } //definition of an enumeration w/ custom constructor for valorization //constructor is not usable outside enum definition enum enumName { value1(value), //call constructor to valorize value2(value), ... , valueN(value); private Type value; Type enumName(Type parameter) { this.value = parameter; } //getters are allowed, the values is a constant --> no setters public Type getValue(){ return this.value; } } enumName variable; //creation of a variable of type enumName ``` ### Anonymous Classes *Anonymous classes* make the code more concise. They enable to declare and instantiate a class at the same time. They are like local classes except that they do not have a name. Useful if is needed a local class that is used once. ```java AnonymousClass objectName = new AnonymousClass(Type parameter, ...) { // attributes // methods }; ``` ### Cloning ```java class ClassName implements Clonable { } ``` ## Generics ```java // WARNING: T is not instantiable, new t(), new t[] are INVALID public class GenericClass { private T generic; public GenericClass() { } public GenericClass(T data){ this.generic = data; } public T getGeneric() { return generic; } public void setGeneric(T data) { this. generic = data; } } GenericClass obj = new GenericClass<>(); GenericClass[] obj = new GenericClass<>[]; // invalid ``` ### Multiple Generics ```java public class GenericClass { } // number of generic types is not limited ``` ### Parameters Constraints Specify an interface or class that the generic type must implement/inherit. ```java public class GenericClass { } public class GenericClass { } public class GenericClass { } ``` ### Generic Methods ```java public class ClassName{ public methodName() { // code here return _obj } public methodName(T obj) { // code here return return _obj } } public class GenericClass { public methodName() { // code here return _obj } public methodName(T obj) { // code here return return _obj } } obj.methodName(); // generic method call ``` ## File I/O ### Text Files #### Writing on a file ```java // opening/creating the file for writing PrintWriter outStream = null; // output stream creation try{ outStream = new PrintWriter(filename); // file-stream binding, file will be empty (creates or overwrites file) outStream = new PrintWriter(new FileOutputStream(filename, true)); // stream for appending text } catch (FileNotFoundException e) { // code here } // write on the file outStream.print(""); outStream.println(""); outStream.close() // close stream and write buffer contents. ``` **Note**: writing operations do not write directly on the file. The sent data is collected in a **buffer**. When the buffer is *full* the data is written in the file. This is called *buffering* and is used to append up operations. #### Reading from a file ```java Filereader filereader = new Filereader("filename"); //open the file Scanner scanner = new Scanner(filereader); //scanner for the file Scanner inStream = null; try{ inStream = new Scanner(File(filename)); } catch (FileNotFoundException e) { // code here } inStream.hasNext(); // true if there is data to be read with next() inStream.hasNextDouble(); // true if there is data to be read with nextDouble() inStream.hasNextInt(); // true if there is data to be read with nextInt() inStream.hasNextLine(); // true if there is data to be read with nextLine() BufferedReader inStream = null; try { inStream = new BufferReader(new Filereader(filename)); //buffed reader for file } catch (FileNotFoundException e) { // code here } // BufferedReader Methods public String readLine() throws IOException // return file line or null (file has ended) public int read() throws IOException // return an integer representing a char or -1 (file has ended) public long skip(n) throws IOException // skip n characters public void close() throws IOException // closes the stream ``` #### `File()` class The File class is an abstraction of the file and it's path. The abstraction is independent from the OS. ```java File("path/to/file") // UNIX like path File("path\\to\\file") // Windows path file.canRead() // true if file is readable file.canWrite() // true if file is writable file.delete() // true if file has been deleted file.exists() // check if exist a file with the filename used in the constructor file.getName() // returns the filename file.getPath() // returns the file's path file.length() // file length in bytes ``` ### Binary Files #### Writing to a binary file ```java ObjectOutputStream outStream; try { outStream = new ObjectOutputStream(new FileOutputSteam(filename)); // write operations here since they can cause IOException } catch (FileNotFoundException e) { } catch (IOException e){ } // ObjectOutputStream Methods public ObjectOutputStream(OutputStream streamObj) throws IOException, FileNotFoundException public ObjectOutputStream(new FileOutputStream(filename)) throws IOException, FileNotFoundException public ObjectOutputStream(new FileOutputStream(new File(filename))) throws IOException, FileNotFoundException public void writeInt(int n) throws IOException public void writeLong(long n) throws IOException public void writeDouble(double x) throws IOException public void writeFloat(float x) throws IOException public void writeChar(int c) throws IOException public void writeChar(char c) throws IOException public void writeBoolean(boolean b) throws IOException public void writeUTF(String s) throws IOException public void writeObject(Object obj) throws IOException, NotSerializableException, InvalidClassException // Object must be serializable public void close() ``` #### Reading from a binary file ```java ObjectInputStream inStream; try { inStream = new ObjectInputStream(new FileinputSteam(filename)); } catch (FileNotFoundException e) { } catch (IOException e){ } try { while(true){ // read fom file } } catch (EOFException e) { // thrown when and of file has been reached // do nothing, only used to stop the cycle } // ObjectOutputStream Methods public ObjectOutputStream(InputStream streamObj) throws IOException, FileNotFoundException public ObjectOutputStream(new FileInputStream(filename)) throws IOException, FileNotFoundException public ObjectOutputStream(new FileInputStream(new File(filename))) throws IOException, FileNotFoundException public void readInt(int n) throws IOException public void readLong(long n) throws IOException public void readDouble(double x) throws IOException public void readFloat(float x) throws IOException public void readChar(int c) throws IOException public void readChar(char c) throws IOException public void readBoolean(boolean b) throws IOException public void readUTF(String s) throws IOException public void readObject(Object obj) throws IOException, NotSerializableException, InvalidClassException // Object must be serializable public void close() ``` ### Object & Array I/O with Binary Files (Serialization) Needed for a class to be *serializable*: - implements the `Serializable` interface - all instance variables are serializable - superclass, if exists, is serializable or has default constructor An array is serializable if it's base type is a serializable object. ```java SerializableObject[] array = (SerializableObject[])inStream.readObject(); // read returns Object, cast needed ``` ## Functional Programming in Java ### Functional Interfaces Functional interfaces provide target types for *lambda expressions*. General purpose `@functionalInterfaces`: ```java // takes input, performs actions, return boolean public interface Predicate { boolean test(T t); } // takes input, performs action, no output returned public interface Consumer { void accept(T t); } // takes no input, performs action, returns an output public interface Supplier { T get(); } // takes T as input, performs action, returns R as output public interface Function { R apply(T t); } ``` ### Streams In java a *stream* is a [Monad][1]. Monads allow the programmer to compose a sequence of operations, similar to a pipeline chaining expressions together. The features of Java stream are: - A stream is not a data structure instead it takes input from the Collections, Arrays or I/O channels. - Streams don't change the original data structure, they only provide the result as per the pipelined methods. - Each intermediate operation is lazily executed and returns a stream as a result, hence various intermediate operations can be pipelined. Terminal operations mark the end of the stream and return the result. **Intermediate Operations**: - `anyMatch()` - `distinct()` - `filter()` - `findFirst()` - `flatmap()` - `map()` - `skip()` - `sorted()` **Terminal Operations**: - `forEach()` applies the same operation on each element - `collect()` saves the elements in a new collection - reduce to a single summary element: `count()`, `max()`, `min()`, `reduce()`, `summaryStatistics()` [1]: https://en.wikipedia.org/wiki/Monad_%28functional_programming%29#Usage ### Lambda Expressions Usable only by a `@FunctionalInterface`'s method or a method of a *stream*. ```java lambda operator -> body; //zero parameter () -> body; //one parameter (p) -> body // multiple parameter (p1, p2, ...) -> body ```