# NumPy Lib ## MOST IMPORTANT ATTRIBUTES ATTRIBUTES ```py array.ndim # number of axes (dimensions) of the array array.shape # dimensions of the array, tuple of integers array.size # total number of elements in the array array.itemsize # size in bytes of each element array.data # buffer containing the array elements ``` ## ARRAY CREATION Unless explicitly specified `np.array` tries to infer a good data type for the array that it creates. The data type is stored in a special dtype object. ```py var = np.array(sequence) # creates array var = np.asarray(sequence) # convert input to array var = np.ndarray(*sequence) # creates multidimensional array var = np.asanyarray(*sequence) # convert the input to an ndarray # nested sequences will be converted to multidimensional array var = np.zeros(ndarray.shape) # array with all zeros var = np.ones(ndarray.shape) # array with all ones var = np.empty(ndarray.shape) # array with random values var = np.identity(n) # identity array (n x n) var = np.arange(start, stop, step) # creates an array with parameters specified var = np.linspace(start, stop, num_of_elements) # step of elements calculated based on parameters ``` ## DATA TYPES FOR NDARRAYS ```py var = array.astype(np.dtype) # copy of the array, cast to a specified type # return TypeError if casting fails ``` The numerical `dtypes` are named the same way: a type name followed by a number indicating the number of bits per element. | TYPE | TYPE CODE | DESCRIPTION | |-----------------------------------|--------------|--------------------------------------------------------------------------------------------| | int8, uint8 | i1, u1 | Signed and unsigned 8-bit (1 byte) integer types | | int16, uint16 | i2, u2 | Signed and unsigned 16-bit integer types | | int32, uint32 | i4, u4 | Signed and unsigned 32-bit integer types | | int64, uint64 | i8, u8 | Signed and unsigned 32-bit integer types | | float16 | f2 | Half-precision floating point | | float32 | f4 or f | Standard single-precision floating point. Compatible with C float | | float64, float128 | f8 or d | Standard double-precision floating point. Compatible with C double and Python float object | | float128 | f16 or g | Extended-precision floating point | | complex64, complex128, complex256 | c8, c16, c32 | Complex numbers represented by two 32, 64, or 128 floats, respectively | | bool | ? | Boolean type storing True and False values | | object | O | Python object type | | string_ | `S` | Fixed-length string type (1 byte per character), `` is string length | | unicode_ | `U` | Fixed-length unicode type, `` is length | ## OPERATIONS BETWEEN ARRAYS AND SCALARS Any arithmetic operations between equal-size arrays applies the operation element-wise. array `+` scalar --> element-wise addition (`[1, 2, 3] + 2 = [3, 4, 5]`) array `-` scalar --> element-wise subtraction (`[1 , 2, 3] - 2 = [-2, 0, 1]`) array `*` scalar --> element-wise multiplication (`[1, 2, 3] * 3 = [3, 6, 9]`) array / scalar --> element-wise division (`[1, 2, 3] / 2 = [0.5 , 1 , 1.5]`) array_1 `+` array_2 --> element-wise addition (`[1, 2, 3] + [1, 2, 3] = [2, 4, 6]`) array_1 `-` array_2 --> element-wise subtraction (`[1, 2, 4] - [3 , 2, 1] = [-2, 0, 2]`) array_1 `*` array_2 --> element-wise multiplication (`[1, 2, 3] * [3, 2, 1] = [3, 4, 3]`) array_1 `/` array_2 --> element-wise division (`[1, 2, 3] / [3, 2, 1] = [0.33, 1, 3]`) ## SHAPE MANIPULATION ```py np.reshape(array, new_shape) # changes the shape of the array np.ravel(array) # returns the array flattened array.resize(shape) # modifies the array itself array.T # returns the array transposed np.transpose(array) # returns the array transposed np.swapaxes(array, first_axis, second_axis) # interchange two axes of an array # if array is an ndarray, then a view of it is returned; otherwise a new array is created ``` ## JOINING ARRAYS ```py np.vstack((array1, array2)) # takes tuple, vertical stack of arrays (column wise) np.hstack((array1, array2)) # takes a tuple, horizontal stack of arrays (row wise) np.dstack((array1, array2)) # takes a tuple, depth wise stack of arrays (3rd dimension) np.stack(*arrays, axis) # joins a sequence of arrays along a new axis (axis is an int) np.concatenate((array1, array2, ...), axis) # joins a sequence of arrays along an existing axis (axis is an int) ``` ## SPLITTING ARRAYS ```py np.split(array, indices) # splits an array into equall7 long sub-arrays (indices is int), if not possible raises error np.vsplit(array, indices) # splits an array equally into sub-arrays vertically (row wise) if not possible raises error np.hsplit(array, indices) # splits an array equally into sub-arrays horizontally (column wise) if not possible raises error np.dsplit(array, indices) # splits an array into equally sub-arrays along the 3rd axis (depth) if not possible raises error np.array_split(array, indices) # splits an array into sub-arrays, arrays can be of different lengths ``` ## VIEW() ```py var = array.view() # creates a new array that looks at the same data # slicing returns a view # view shapes are separated but assignment changes all arrays ``` ## COPY() ```py var = array.copy() # creates a deep copy of the array ``` ## INDEXING, SLICING, ITERATING 1-dimensional --> sliced, iterated and indexed as standard n-dimensional --> one index per axis, index given in tuple separated by commas `[i, j] (i, j)` dots (`...`) represent as many colons as needed to produce complete indexing tuple - `x[1, 2, ...] == [1, 2, :, :, :]` - `x[..., 3] == [:, :, :, :, 3]` - `x[4, ..., 5, :] == [4, :, :, 5, :]` iteration on first index, use .flat() to iterate over each element - `x[*bool]` returns row with corresponding True index - `x[condition]` return only elements that satisfy condition - x`[[*index]]` return rows ordered by indexes - `x[[*i], [*j]]` return elements selected by tuple (i, j) - `x[ np.ix_( [*i], [*j] ) ]` return rectangular region ## UNIVERSAL FUNCTIONS (ufunc) Functions that performs element-wise operations (vectorization). ```py np.abs(array) # vectorized abs(), return element absolute value np.fabs(array) # faster abs() for non-complex values np.sqrt(array) # vectorized square root (x^0.5) np.square(array) # vectorized square (x^2) np.exp(array) # vectorized natural exponentiation (e^x) np.log(array) # vectorized natural log(x) np.log10(array) # vectorized log10(x) np.log2(array) # vectorized log2(x) np.log1p(array) # vectorized log(1 + x) np.sign(array) # vectorized sign (1, 0, -1) np.ceil(array) # vectorized ceil() np.floor(array) # vectorized floor() np.rint(array) # vectorized round() to nearest int np.modf(array) # vectorized divmod(), returns the fractional and integral parts of element np.isnan(array) # vectorized x == NaN, return boolean array np.isinf(array) # vectorized test for positive or negative infinity, return boolean array np.isfineite(array) # vectorized test fo finiteness, returns boolean array np.cos(array) # vectorized cos(x) np.sin(array) # vectorized sin(x) np.tan(array) # vectorized tan(x) np.cosh(array) # vectorized cosh(x) np.sinh(array) # vector sinh(x) np.tanh(array) # vectorized tanh(x) np.arccos(array) # vectorized arccos(x) np.arcsinh(array) # vectorized arcsinh(x) np.arctan(array) # vectorized arctan(x) np.arccosh(array) # vectorized arccosh(x) np.arcsinh(array) # vectorized arcsin(x) np.arctanh(array) # vectorized arctanh(x) np.logical_not(array) # vectorized not(x), equivalent to -array np.add(x_array, y_array) # vectorized addition np.subtract(x_array, y_array) # vectorized subtraction np.multiply(x_array, y_array) # vectorized multiplication np.divide(x_array, y_array) # vectorized division np.floor_divide(x_array, y_array) # vectorized floor division np.power(x_array, y_array) # vectorized power np.maximum(x_array, y_array) # vectorized maximum np.minimum(x_array, y_array) # vectorized minimum np.fmax(x_array, y_array) # vectorized maximum, ignores NaN np.fmin(x_array, y_array) # vectorized minimum, ignores NaN np.mod(x_array, y_array) # vectorized modulus np.copysign(x_array, y_array) # vectorized copy sign from y_array to x_array np.greater(x_array, y_array) # vectorized x > y np.less(x_array, y_array) # vectorized x < y np.greter_equal(x_array, y_array) # vectorized x >= y np.less_equal(x_array, y_array) # vectorized x <= y np.equal(x_array, y_array) # vectorized x == y np.not_equal(x_array, y_array) # vectorized x != y np.logical_and(x_array, y_array) # vectorized x & y np.logical_or(x_array, y_array) # vectorized x | y np.logical_xor(x_array, y_array) # vectorized x ^ y ``` ## CONDITIONAL LOGIC AS ARRAY OPERATIONS ```py np.where(condition, x, y) # return x if condition == True, y otherwise ``` ## MATHEMATICAL AND STATISTICAL METHODS `np.method(array, args)` or `array.method(args)`. Boolean values are coerced to 1 (`True`) and 0 (`False`). ```py np.sum(array, axis=None) # sum of array elements over a given axis np.median(array, axis=None) # median along the specified axis np.mean(array, axis=None) # arithmetic mean along the specified axis np.average(array, axis=None) # weighted average along the specified axis np.std(array, axis=None) # standard deviation along the specified axis np.var(array, axis=None) # variance along the specified axis np.min(array, axis=None) # minimum value along the specified axis np.max(array, axis=None) # maximum value along the specified axis np.argmin(array, axis=None) # indices of the minimum values along an axis np.argmax(array, axis=None) # indices of the maximum values np.cumsum(array, axis=None) # cumulative sum of the elements along a given axis np.cumprod(array, axis=None) # cumulative sum of the elements along a given axis ``` ## METHODS FOR BOOLEAN ARRAYS ```py np.all(array, axis=None) # test whether all array elements along a given axis evaluate to True np.any(array, axis=None) # test whether any array element along a given axis evaluates to True ``` ## SORTING ```py array.sort(axis=-1) # sort an array in-place (axis = None applies on flattened array) np.sort(array, axis=-1) # return a sorted copy of an array (axis = None applies on flattened array) ``` ## SET LOGIC ```py np.unique(array) # sorted unique elements of an array np.intersect1d(x, y) # sorted common elements in x and y np.union1d(x, y) # sorte union of elements np.in1d(x, y) # boolean array indicating whether each element of x is contained in y np.setdiff1d(x, y) # Set difference, elements in x that are not in y np.setxor1d() # Set symmetric differences; elements that are in either of the arrays, but not both ``` ## FILE I/O WITH ARRAYS ```py np.save(file, array) # save array to binary file in .npy format np.savez(file, *array) # save several arrays into a single file in uncompressed .npz format np.savez_compressed(file, *args, *kwargs) # save several arrays into a single file in compressed .npz format # *ARGS: arrays to save to the file. arrays will be saved with names "arr_0", "arr_1", and so on # **KWARGS: arrays to save to the file. arrays will be saved in the file with the keyword names np.savetxt(file, X, fmt="%.18e", delimiter=" ") # save array to text file # X: 1D or 2D # FMT: Python Format Specification Mini-Language # DELIMITER: {str} -- string used to separate values np.load(file, allow_pickle=False) # load arrays or pickled objects from .npy, .npz or pickled files np.loadtxt(file, dtype=float, comments="#", delimiter=None) # DTYPE: {data type} -- data-type of the resulting array # COMMENTS: {str} -- characters used to indicate the start of a comment. None implies no comments # DELIMITER: {str} -- string used to separate values ``` ## LINEAR ALGEBRA ```py np.diag(array, k=0) # extract a diagonal or construct a diagonal array # K: {int} -- k>0 diagonals above main diagonal, k<0 diagonals below main diagonal (main diagonal k = 0) np.dot(x ,y) # matrix dot product np.trace(array, offset=0, dtype=None, out=None) # return the sum along diagonals of the array # OFFSET: {int} -- offset of the diagonal from the main diagonal # dtype: {dtype} -- determines the data-type of the returned array # OUT: {ndarray} -- array into which the output is placed np.linalg.det(A) # compute the determinant of an array np.linalg.eig(A) # compute the eigenvalues and right eigenvectors of a square array np.linalg.inv(A) # compute the (multiplicative) inverse of a matrix # A_inv satisfies dot(A, A_inv) = dor(A_inv, A) = eye(A.shape[0]) np.linalg.pinv(A) # compute the (Moore-Penrose) pseudo-inverse of a matrix np.linalg.qr() # factor the matrix a as qr, where q is orthonormal and r is upper-triangular np.linalg.svd(A) # Singular Value Decomposition np.linalg.solve(A, B) # solve a linear matrix equation, or system of linear scalar equations AX = B np.linalg.lstsq(A, B) # return the least-squares solution to a linear matrix equation AX = B ``` ## RANDOM NUMBER GENERATION ```py np.random.seed() np.random.rand() np.random.randn() np.random.randint() np.random.Generator.permutation(x) # randomly permute a sequence, or return a permuted range np.random.Generator.shuffle(x) # Modify a sequence in-place by shuffling its contents np.random.Generator.beta(a, b, size=None) # draw samples from a Beta distribution # A: {float, array floats} -- Alpha, > 0 # B: {int, tuple ints} -- Beta, > 0 np.random.Generator.binomial(n, p, size=None) # draw samples from a binomial distribution # N: {int, array ints} -- parameter of the distribution, >= 0 # P: {float, arrey floats} -- Parameter of the distribution, >= 0 and <= 1 np.random.Generator.chisquare(df, size=None) # DF: {float, array floats} -- degrees of freedom, > 0 np.random.Generator.gamma(shape, scale=1.0, size=None) # draw samples from a Gamma distribution # SHAPE: {float, array floats} -- shape of the gamma distribution, != 0 np.random.Generator.normal(loc=0.0, scale=1.0, Size=None) # draw random samples from a normal (Gaussian) distribution # LOC: {float, all floats} -- mean ("centre") of distribution # SCALE: {float, all floats} -- standard deviation of distribution, != 0 np.random.Generator.poisson(lam=1.0, size=None) # draw samples from a Poisson distribution # LAM: {float, all floats} -- expectation of interval, >= 0 np.random.Generator.uniform(low=0.0,high=1.0, size=None) # draw samples from a uniform distribution # LOW: {float, all floats} -- lower boundary of the output interval # HIGH: {float, all floats} -- upper boundary of the output interval np.random.Generator.zipf(a, size=None) # draw samples from a Zipf distribution # A: {float, all floats} -- distribution parameter, > 1 ```