# MongoDB

The database is a container of **collections**. The collections are containers of **documents**.

The documents are _schema-less_ that is they have a dynamic structure that can change between documents in the same collection.

## Data Types

| Tipo              | Documento                                        | Funzione                |
| ----------------- | ------------------------------------------------ | ----------------------- |
| Text              | `"Text"`                                         |
| Boolean           | `true`                                           |
| Number            | `42`                                             |
| Objectid          | `"_id": {"$oid": "<id>"}`                        | `ObjectId("<id>")`      |
| ISODate           | `"<key>": {"$date": "YYYY-MM-DDThh:mm:ss.sssZ"}` | `ISODate("YYYY-MM-DD")` |
| Timestamp         |                                                  | `Timestamp(11421532)`   |
| Embedded Document | `{"a": {...}}`                                   |
| Embedded Array    | `{"b": [...]}`                                   |

It's mandatory for each document ot have an unique field `_id`.
MongoDB automatically creates an `ObjectId()` if it's not provided.

## Databases & Collections Usage

To create a database is sufficient to switch towards a non existing one with `use <database>` (implicit creation).
The database is not actually created until a document is inserted.

```sh
show dbs  # list all databases
use <database>  # use a particular database
show collections  # list all collection for the current database

dbs.dropDatabase()  # delete current database

db.createCollection(name, {options})  # explicit collection creation
db.<collection>.insertOne({document})  # implicit collection creation
```

## Operators (MQL Syntax)

```json
/* --- Update operators --- */
{ "$inc":  { "<key>": "<increment>", ... } }  // Increment value
{ "$set":  { "<key>": "<value>", ... } }  // Set value
{ "$push": { "<key>": "<value>", ... } }  // add a value to an array field or turn field into array

/* --- Query Operators --- */
{ "<key>": { "$in": [ "<value_1>", "<value_2>", ...] } } // Membership
{ "<key>": { "$nin": [ "<value_1>", "<value_2>", ...] } }  // Membership
{ "<key>": { "$exists": true } }  // Field Exists

/* --- Comparison Operators (DEFAULT: $eq) --- */
{ "<key>": { "$gt":  "<value>" }}  // >
{ "<key>": { "$gte": "<value>" }}  // >=
{ "<key>": { "$lt":  "<value>" }}  // <
{ "<key>": { "$lte": "<value>" }}  // <=
{ "<key>": { "$eq":  "<value>" }}  // ==
{ "<key>": { "$ne":  "<value>" }}  // !=

/* --- Logic Operators (DEFAULT $and) --- */
{ "$and": [ { "<expression>" }, ...] }
{ "$or":  [ { "<expression>" }, ...] }
{ "$nor": [ { "<expression>" }, ...] }
{ "$not": { "<expression>" } }

/* --- Array Operators --- */
{ "<key>": { "$all": ["value>", "<value>", ...] } } // field contains all values
{ "<key>": { "$size": "<value>" } }
{ "<array-key>": { "$elemMatch": { "<item-key>": "<expression>" } } }  // elements in array must match an expression

/* --- REGEX Operator --- */
{ "<key>": { "$regex": "/pattern/", "$options": "<options>" } }
{ "<key>": { "$regex": "pattern", "$options": "<options>" } }
{ "<key>": { "$regex": "/pattern/<options>" } }
{ "<key>": "/pattern/<options>" }
```

### Expressive Query Operator

> **Note**:  `$<key>` is used to access the value of the field dynamically

```json
{ "$expr": { "<expression>" } }  // aggregation expression, variables, conditional expressions
{ "$expr":  { "$<comparison_operator>": [ "$<key>", "$<key>" ] } }  // compare field values (operators use aggregation syntax)
```

## CRUD Operations

### Create

It's possible to insert a single document with the command `insertOne()` or multiple documents with `insertMany()`.

Insertion results:

- error -> rollback
- success -> entire documents gets saved

```sh
# explicit collection creation, all options are optional
db.createCollection( <name>,
   {
        capped: <boolean>,
        autoIndexId: <boolean>,
        size: <number>,
        max: <number>,
        storageEngine: <document>,
        validator: <document>,
        validationLevel: <string>,
        validationAction: <string>,
        indexOptionDefaults: <document>,
        viewOn: <string>,
        pipeline: <pipeline>,
        collation: <document>,
        writeConcern: <document>
   }
)

db.createCollection("name", { capped: true, size: max_bytes, max: max_docs_num } )  # creation of a capped collection
# SIZE: int - will be rounded to a multiple of 256

# implicit creation at doc insertion
db.<collection>.insertOne({ document }, options)  # insert a document in a collection
db.<collection>.insertMany([ { document }, { document }, ... ], options)  # insert multiple docs
db.<collection>.insertMany([ { document }, { document } ] , { "ordered": false })  # allow the unordered insertion, only documents that cause errors wont be inserted
```

> **Note**: If `insertMany()` fails the already inserted documents are not rolled back but all the successive ones (even the correct ones) will not be inserted.

### Read

```sh
db.<collection>.findOne()  # find only one document
db.<collection>.find(filter)  # show selected documents
db.<collection>.find().pretty()  # show documents formatted
db.<collection>.find().limit(n)  # show n documents
db.<collection>.find().limit(n).skip(k)  # show n documents skipping k docs
db.<collection>.find().count()  # number of found docs
db.<collection>.find().sort({ "<key-1>": 1, ... , "<key-n>": -1 })  # show documents sorted by specified keys in ascending (1) or descending (-1) order

# projection
db.<collection>.find(filter, { "<key>": 1 })  # show selected values form documents (1 or true => show, 0 or false => don't show, cant mix 0 and 1)
db.<collection>.find(filter, { _id: 0, "<key>": 1 })  # only _id can be set to 0 with other keys at 1
db.<collection>.find(filter, { "<array-key>": { "$elemMatch": { "<item-key>": "<expression>" } } })  # project only elements matching the expression

# sub documents & arrays
db.<collection>.find({ "<key>.<sub-key>.<sub-key>": "<expression>" })
db.<collection>.find({ "<array-key>.<index>.<sub-key>": "<expression>" })

# GeoJSON - https://docs.mongodb.com/manual/reference/operator/query/near/index.html
db.<collection>.find(
    {
        <location field>: {
            $near: {
                $geometry: { type: "Point", coordinates: [ <longitude> , <latitude> ] },
                $maxDistance: <distance in meters>,
                $minDistance: <distance in meters>
            }
        }
    }
)

db.<collection>.find().hint( { "<key>": 1 } )  # specify the index
db.<collection>.find().hint( "index-name" )  # specify the index using the index name

db.<collection>.find().hint( { $natural : 1 } )  # force the query to perform a forwards collection scan
db.<collection>.find().hint( { $natural : -1 } )  # force the query to perform a reverse collection scan
```

> **Note**: `{ <key>: <value> }` in case of a field array will match if the array _contains_ the value

### Update

[Update Operators](https://docs.mongodb.com/manual/reference/operator/update/ "Update Operators Documentation")

```sh
db.<collection>.replaceOne(filter, update, options)
db.<collection>.updateOne(filter, update, {upsert: true})  # modify document if existing, insert otherwise

db.<collection>.updateOne(filter, { "$push": { ... }, "$set": { ... }, { "$inc": { ... }, ... } })
```

### Delete

```sh
db.<collection>.deleteOne(filter, options)
db.<collection>.deleteMany(filter, options)

db.<collection>.drop()  # delete whole collection
db.dropDatabase()  # delete entire database
```

## [Mongoimport](https://docs.mongodb.com/database-tools/mongoimport/)

Utility to import all docs into a specified collection.  
If the collection already exists `--drop` deletes it before reuploading it.
**WARNING**: CSV separators must be commas (`,`)

```sh
mongoimport <options> <connection-string> <file>

--uri=<connectionString>
--host=<hostname><:port>, -h=<hostname><:port>
--username=<username>, -u=<username>
--password=<password>, -p=<password>
--collection=<collection>, -c=<collection>  # Specifies the collection to import.
--ssl  # Enables connection to a mongod or mongos that has TLS/SSL support enabled.
--type <json|csv|tsv>  # Specifies the file type to import. DEFAULT: json
--drop  # drops the collection before importing the data from the input.
--headerline  # if file is CSV and first line is header
--jsonarray  # Accepts the import of data expressed with multiple MongoDB documents within a single json array. MAX 16 MB
```

## [Mongoexport](https://docs.mongodb.com/database-tools/mongoexport/)

Utility to export documents into a specified file.

```sh
mongoexport --collection=<collection> <options> <connection-string>

--uri=<connectionString>
--host=<hostname><:port>, -h=<hostname><:port>
--username=<username>, -u=<username>
--password=<password>, -p=<password>
--db=<database>, -d=<database>
--collection=<collection>, -c=<collection>
--type=<json|csv>
--out=<file>, -o=<file>  #Specifies a file to write the export to. DEFAULT: stdout
--jsonArray  # Write the entire contents of the export as a single json array.
--pretty  # Outputs documents in a pretty-printed format JSON.
--skip=<number>
--limit=<number>  # Specifies a maximum number of documents to include in the export
--sort=<JSON>  # Specifies an ordering for exported results
```

## [Mongodump][mongodump_docs] & [Mongorestore][mongorestore_docs]

`mongodump` exports the content of a running server into `.bson` files.

`mongorestore` Restore backups generated with `mongodump` to a running server.

[mongodump_docs]: https://docs.mongodb.com/database-tools/mongodump/
[mongorestore_docs]: https://docs.mongodb.com/database-tools/mongorestore/

## Relations

**Nested / Embedded Documents**:

- Group data logically
- Optimal for data belonging together that do not overlap
- Should avoid nesting too deep or making too long arrays (max doc size 16 mb)

```json
{
    "_id": "ObjectId()",
    "<key>": "value",
    "<key>": "value",

    "innerDocument": {
        "<key>": "value",
        "<key>": "value"
    }
}
```

**References**:

- Divide data between collections
- Optimal for related but shared data used in relations or stand-alone
- Allows to overtake nesting and size limits

NoSQL databases do not have relations and references. It's the app that has to handle them.

```json
{
    "<key>": "value",
    "references": ["id1", "id2"]
}

// referenced
{
    "_id": "id1",
    "<key>": "value"
}
```

## [Indexes](https://docs.mongodb.com/manual/indexes/ "Index Documentation")

Indexes support the efficient execution of queries in MongoDB.

Without indexes, MongoDB must perform a _collection scan_ (_COLLSCAN_): scan every document in a collection, to select those documents that match the query statement.  
If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect (_IXSCAN_).

Indexes are special data structures that store a small portion of the collection's data set in an easy to traverse form. The index stores the value of a specific field or set of fields, ordered by the value of the field. The ordering of the index entries supports efficient equality matches and range-based query operations. In addition, MongoDB can return sorted results by using the ordering in the index.

Indexes _slow down writing operations_ since the index must be updated at every writing.

![IXSCAN](../img/mongodb_ixscan.png ".find() using an index")

### [Index Types](https://docs.mongodb.com/manual/indexes/#index-types)

- **Normal**: Fields sorted by name
- **Compound**: Multiple Fields sorted by name
- **Multikey**: values of sorted arrays
- **Text**: Ordered text fragments
- **Geospatial**: ordered geodata

**Sparse** indexes only contain entries for documents that have the indexed field, even if the index field contains a null value. The index skips over any document that is missing the indexed field.

### Diagnosis and query planning

```sh
db.<collection>.find({...}).explain()  # explain won't accept other functions
db.explain().<collection>.find({...})  # can accept other functions
db.explain("executionStats").<collection>.find({...})  # more info
```

### Index Creation

```sh
db.<collection>.createIndex( <key and index type specification>, <options> )

db.<collection>.createIndex( { "<key>": <type>, "<key>": <type>, ... } )  # normal, compound or multikey (field is array) index
db.<collection>.createIndex( { "<key>": "text" } )  # text index
db.<collection>.createIndex( { "<key>": 2dsphere } )  # geospatial 2dsphere index

# sparse index
db.<collection>.createIndex(
    { "<key>": <type>, "<key>": <type>, ... },
    { sparse: true }  # sparse option
)

# custom name
db.<collection>.createIndex(
  { <key and index type specification>, },
  { name: "index-name" }  # name option
)
```

### [Index Management](https://docs.mongodb.com/manual/tutorial/manage-indexes/)

```sh
# view all db indexes
db.getCollectionNames().forEach(function(collection) {
   indexes = db[collection].getIndexes();
   print("Indexes for " + collection + ":");
   printjson(indexes);
});
db.<collection>.getIndexes()  # view collection's index

db.<collection>.dropIndexes()  # drop all indexes
db.<collection>.dropIndex( { "index-name": 1 } )  # drop a specific index
```

## Database Profiling

Profiling Levels:

- `0`: no profiling
- `1`: data on operations slower than `slowms`
- `2`: data on all operations

Logs are saved in the `system.profile` _capped_ collection.

```sh
db.setProfilingLevel(n)  # set profiler level
db.setProfilingLevel(1, { slowms: <ms> })
db.getProfilingStatus()  # check profiler status

db.system.profile.find().limit(n).sort( {} ).pretty()  # see logs
db.system.profile.find().limit(n).sort( { ts : -1 } ).pretty()  # sort by decreasing timestamp
```

## Roles and permissions

**Authentication**: identifies valid users
**Authorization**: identifies what a user can do

- **userAdminAnyDatabase**: can admin every db in the instance (role must be created on admin db)
- **userAdmin**: can admin the specific db in which is created
- **readWrite**: can read and write in the specific db in which is created
- **read**: can read the specific db in which is created

```sh
# create users in the current MongoDB instance
db.createUser(
    {
        user: "dbAdmin",
        pwd: "password",
        roles:[
            {
                role: "userAdminAnyDatabase",
                db:"admin"
            }
        ]
    },
    {
        user: "username",
        pwd: "password",
        roles:[
            {
                role: "role",
                db: "database"
            }
        ]
    }
)
```

## Sharding

**Sharding** is a MongoDB concept through which big datasets are subdivided in smaller sets and distributed towards multiple instances of MongoDB.  
It's a technique used to improve the performances of large queries towards large quantities of data that require al lot of resources from the server.

A collection containing several documents is splitted in more smaller collections (_shards_)
Shards are implemented via cluster that are none other a group of MongoDB instances.

Shard components are:

- Shards (min 2), instances of MongoDB that contain a subset of the data
- A config server, instance of MongoDB which contains metadata on the cluster, that is the set of instances that have the shard data.
- A router (or `mongos`), instance of MongoDB used to redirect the user instructions from the client to the correct server.

![Shared Cluster](../img/mongodb_shared-cluster.png "Components of a shared cluster")

### [Replica set](https://docs.mongodb.com/manual/replication/)

A **replica set** in MongoDB is a group of `mongod` processes that maintain the `same dataset`. Replica sets provide redundancy and high availability, and are the basis for all production deployments.

## [Aggregation Framework](https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/)

Sequence of operations applied to a collection as a _pipeline_ to get a result: `db.collection.aggregate(pipeline, options)`.  
Each step of the pipeline acts on its inputs and not on the original data in the collection.

```sh

db.<collection>.aggregate([ 
    { "$project": { "_id": 0, "<key>": 1, ...} },

    { "$match": { "<query>" } },

    { "$group": {
            "_id": "<expression>",  # Group By Expression (Required)
            "<key-1>": { "<accumulator-1>": "<expression-1>" },
            ...
        } 
    },

    {
        "$lookup": {
            "from": "<collection to join>",
            "localField": "<field from the input documents>",
            "foreignField": "<field from the documents of the 'from' collection>",
            "as": "<output array field>"
        }
    },

    { "$sort": { "<key-1>": "<sort order>", "<key-2>": "<sort order>", ... } },

    { "$count": "<count-key>" },

    { "$skip": "<positive 64-bit integer>" }

    { "$limit": "<positive 64-bit integer>" }
    
    { ... } 
])
```