# Python Notes ## Basics ### Naming Convention Class -> PascalCase Method, Function -> snake_case Variable -> snake_case ```py # standard comment '''multiline comment''' """DOCSTRING""" help(object.method) # return method explanation dir(object) # return an alphabetized list of names comprising (some of) the attributes of the given object import sys # import module from sys import argv # import single item from a module from sys import * # import all elements of a module (no module syntax.method needed) import sys as alias # import the module with an alias, I use alias.method # CHARACTER SET import string string.ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz' string.asci_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' string.asci_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' string.digits = '0123456789' string.hexdigits = '0123456789abcdefABCDEF' string.octdigits = '01234567' string.punctuation string.whitespace # SPECIAL CHARACTERS # (\a, \b, \f, \n, \r, \t, \u, \U, \v, \x, \\) ``` ### Assignment Operation ```py """instructions to the right of = executed before instructions to the left of =""" variable = expression # the type of the variable is dynamically decided by python based on the content var_1, var_2 = value1, value2 # parallel assignment var_1, var_2 = var_2, var_1 # swap values # conditional assignment x = a if condition else b x = a or b # If bool (a) returns False, then x is assigned the value of b # a series of OR expressions has the effect of returning the first item that evaluates True, or the last item (last item should be a literal). ``` ### Variable Type Conversion `type(expression)` ### Expression Assignment ```py (var: = expression) # assign an expression to a variable to avoid repeating the expression ``` ### Variable Comparison (`==` vs `is`) `==` compares the values ​​of objects `is` compares the identities of objects ### On Screen Output ```py print() # print blank line and wrap print('string' * n) # print string n times print('string1 \ n string2') # wrap with \ n print(variable) # print variable content print('string', end = '') # print without wrapping # FORMATTING name = 'Alex' marks = 94.5 print(name, marks) print('Name is', name, '\ nMarks are', marks) # expand the rest of the expression and write tense before = in output print(f '{name =}, {marks =}') # OUTPUT: name = Alex, marks = 94.5 # USE OF PLACEHOLDERS print('Name is% s, Marks are% 3.2f'%(name, marks)) # method inherited from C. Variable is substituted for% .. print("Name is {}, Marks are {}". format(name, marks)) print("Name is {1}, Marks are {2}". format(marks, name)) # indices in brackets sort elements in .format print("Name is {n}, Marks are {m}". format(m = '94 .5 ', n =' Alex ')) # indices in brackets sort elements in .format print(f'Name is {name}, Marks are {marks} ') # formatting with f-strings ``` ### Format Specification Mini-Language `{value:width.precision symbol}` Format: `[[fill]align] [sign] [#] [width] [grouping] [.precision] [type]` | `[align]` | Alignment | | --------- | ---------------------- | | `:<` | left alignment | | `:>` | right alignment | | `:=` | padding after the mark | | `:^` | centered | | `[sign]` | NUMBER SIGNS | | -------- | --------------------------------------------------------------------------------------------------------------- | | `:+` | sign for both positive and negative numbers | | `:-` | sign only for negative numbers | | `:` | space for num > 0, '-' for num < 0 | | `:#` | alternative form:prefix integers type (0x, 0b, 0o), floats and complexes always have at least one decimal place | | `[grouping]` | GROUPING | | ------------ | ------------------------------------ | | `:,` | use comma to separate thousands | | `:_` | use underscore to separate thousands | | `[type]` | OUTPUT TYPE | | -------- | --------------------------------------------------------------------------- | | `:s` | output is string | | `:b` | output is binary | | `:c` | output is character | | `:d` | output is a decimal integer (base 10) | | `:or` | output is octal integer (base 8) | | `:x` | output is hexadecimal integer (base 16) | | `:X` | output is hexadecimal integer (base 16) with uppercase | | `:e` | output is exponential notation (6-digit base precision) | | `:E` | output is exponential notation (6-digit base precision) uppercase separator | | `:f` | output is float (6-digit base precision) | | `:%` | output is percentage (multiplies * 100, displays as:f) | ### Keyboard Input ```py # input always returns a STRING s = input() # input request without message s = input('Prompt') # request input i = int(input('prompt')) # request input with type conversion # MULTIPLE INPUTS list = [int(x) for x in input('prompt'). split('separator')] # save multiple inputs in a list(.split separates values ​​and defines separator ``` ## Numeric Types ```py a = 77 b = 1_000_000 # underscore can be used to separate groups of digits c = -69 # float numbers x = 3.15 y = 2.71 z = 25.0 d = 6 + 9j # complex number # returns a complex number starting with two reals complex(real, imag) # -> complex #(real + imag * 1j) e = 0B1101 # BINARY TYPE(0B ...) f = 0xFF # EXADECIMAL TYPE(0X ...) o = 0o77 # OCTAL TYPE g = True # BOOLEAN TYPE # VARIABLE TYPE CONVERSION h = int(y) i = float('22 .5 ') # NUMERIC BASIC CONVERSION bin(3616544) hex(589) oct(265846) # UNICODE CONVERSION ord(c) # Given a string representing one Unicode character, return an integer representing the Unicode code point of that character chr(i) # Return the string representing a character whose Unicode code point is the integer i pow(x, y) # x ^ y abs(num) # returns absolute value of num(| num |) round(num, precision) # rounds number to given precision, does not convert float to int ``` ### Comparison of Decimal Numbers Do not use `==` or `! =` To compare floating point numbers. They are approximations or have several digits. It is worth checking if the difference between the numbers is small enough. ## Strings ```py string = 'string content' # assignment and creation of string variable string = '''multi line string''' string3 = string1 + string2 # string concatenation(operator polymorphism +) # INDEXING(selection of a character in the string) string[0] string[2] string[-3] # selection starting from the bottom(negative index) # REPETITION (repeat string output) print(string * n) len(string) # show the length of a string # SLICING (extraction of sub-strings, does not include the position of the last index) string[0: 5] string[: 6] string[-3: -1] # SLICING WITH STEP string[0: 12: 3] string[15 :: - 1] string[:: - 1] # selection in reverse order (negative step) # STRIPPING (elimination of spaces before and after string) string = 'stripping test' string.strip() string.lstrip() # only left spaces removed string.rstrip() # only right spaces removed string.removeprefix(prefix) # If the string starts with the prefix string, return string [len (prefix):] string.removesuffix(suffix) # If the string ends with the suffix string and that suffix is ​​not empty, return string [: - len (suffix)] # SUBSTRING IDENTIFICATION #returns starting index of the substring or -1 if it is not present string.find('substring', 0, len (string)) # you can specify the start and end index of the search # COUNT OF APPARITIONS string.count('t') # REPLACEMENT string.replace('multi', 'multiple') # UPPER CASE CONVERSION string.upper() string.lower() string.title() string.capitalize() # SEPARATION IN LIST ELEMENTS string.split() string.split('separator') # separate using separator (separator omitted in list) string.partition('char') # -> tuple # separates the string from the 3 parts at the first occurrence of separator # IS_CHECK METHODS -> bool string.isalnum() string.isalpha() string.islower() string.isspace() string.istitle() string.isupper() string.endswith('char') # JOIN INSTRUCTION() ''.join(iterable) # merges all elements of the iterable into the new string # FORMATTING string.center(width, 'char') # stretch the string with char to width '...\t...'.expandtabs() # transform tabs into spaces ``` ## Lists ```py list = [9, 11, 'WTC', -5.6, True] # lists can contain data of different types list[3] # indexing list[3: 5] # slicing list * 3 # repetition len(list) # length list3 = list1 + list2 # list concatenation (operator + polymorphism) list[index] = value # modify list element del (list [1]) # remove by index (INBUILT IN PYTHON) # modify the list between the start and stop indices by reassigning the elements of the iterable list[start: stop] = iterable # LIST METHODS list.append(object) # add object to background list.count(item) # counts the number of occurrences of item list.extend(sequence) # add sequence elements to the list list.insert(position, object) # insert object in list [position] list.index(item) # returns the index of item list.remove(item) # remove item poplist(item) # delete item and return it list.clear() # remove all elements list.sort() # sorts in ascending order (in place) list.sort(reverse = True) # sorts in descending order (in place) list.reverse() # invert the string (in place) # CLONING list1 = [...] list2 = list1 # list2 points to the same object of list 1 (changes are shared) list3 = list1 [:] # list3 is a clone of list1 (no shared changes) # NESTED LISTS (MATRICES) list_1 = [1, 2, 3] list_2 = [4, 5, 6] list_3 = [7, 8, 9] matrix = [list_1, list_2, list_3] matrix [i][j] # identify element of list_i index j # MAXIMUM AND MINIMUM max(list) min(list) # ALL () & ANY () all(sequence) # returns TRUE if all elements of the sequence are true any(sequence) # returns TRUE if at least one element of the sequence has the value True # MAP INSTRUCTION # apply function to iterable and create new list (map object) # function can be lambda map(function, iterable) # -> map object # FILTER INSTRUCTION () # create a new list composed of the iterable elements for which the function returns TRUE filter(function, iterable) # -> filter object # ZIP INSTRUCTION () # create a tuple generator by joining two or more iterables # [(seq_1 [0], seq_2 [0], ...), (seq_1 [1], seq_2 [1], ...), ...] # truncate the sequence to the length of the shortest input sequence zip(seq_1, seq_2, ...) # -> zip object (tuple generator) # LIST COMPREHENSIONS var = [expression for element in sequence if condition] # create list from pre-existing list (instead of map, filter, reduce) applying any manipulations # expression can be lambda, if is optional var = [expression if condition else statement for element in sequence] # list comprehension with IF-ELSE var = [expression_1 for element in [expression_2 for element in sequence]] # nested list comprehension var = [(exp_1, exp_2) for item_1 in seq_1 for item_2 in seq_2] # -> [(..., ...), (..., ...), ...] ``` ## Tuple ```py # TUPLES CANNOT BE MODIFIED tuple = (69, 420, 69, 'abc') # tuple assignment tuple = (44,) # single element tuples need a comma tuple[3] # indexing tuple * 3 # repetition tuple.count(69) # counting tuple.index(420) # find index len(tuple) # length tuple # CONVERSION FROM TUPLE TO LIST tuple = tuple(list) # TUPLE UNPACKING tup = (item_1, item_2, etc) var_1, var_2, etc = tup # var_1 = item_1, var_2 = item_2, ... tup = (item_1, (item_2, item_3)) var_1, (var_2, var_3) = tup # var_1 = item_1, var_2 = item_2, var_3 = item_3 #OPERATOR * VAR (tuple unpacking) var_1, var_2, * rest = sequence # var_1 = seq [0], var_2 = seq [1], rest = seq [2:] var_1, * body, var_2, var_3 = sequence # var_1 = seq [0], body = seq [1: -2], var_2 = sequence [-2], var_3 = seq [-1] # * var retrieves the excess items, if in parallel assignment usable max once but in any position ``` ## Set ```py # SETS MAY NOT CONTAIN REPEATED ELEMENTS (THEY ARE OMITTED) # THE ORDER DOES NOT MATTER (NO SLICING, INDEXING, REPETITION, ...) set = {10, 20, 30, 'abc', 20} len(set) # length set set() # create empty set ({} create empty dictionary) # FREEZING SETS (no longer editable) fset = frozenset(set) # OPERATORS set_1 - set_2 # elements in set_1 but not in set_2 set_1 | set_2 # elements in set_1 or set_2 set_1 & set_2 # elements in set_1 and set_2 set_1 ^ set_1 # elements in either set_1 or set_2 set_1 <= set_2 # elements set_1 also in set_2 set_1 < set_2 # set_1 <= set_2 and set_1! = set_2 set_1 >= set_2 # elements set_2 also in set_1 set_1 > set_2 # set_1> = set_2 and set_1! = set_2 # METHODS SET set.pop(item) # remove and return item set.add(item) # add item to set set.copy() # -> set # returns a copy of the set set.clear() # remove all elements from the set set.remove(item) # remove item from set if present, otherwise raise KeyError set.discard(item) # remove item from set if present, otherwise do nothing set.difference(* sets) # -> set # returns elements in set that are absent in * sets set.difference_update(* sets) # remove differences from set_2 set.union(* sets) # -> set # returns all elements of sets set.update(* sets) # add * sets elements to set set.intersection(* sets) # -> set # returns the elements common to sets set.intersection_update(* sets) # remove all elements except those common to sets set.symmetric_difference(* sets) # -> set # returns elements not common to sets set.symmetric_difference_update(* sets) # remove all elements common to sets (leave only uncommon elements) set_1.isdisjoint(set_2) # -> bool # True if there are no common elements (intersection is empty) set_1.issubset(set_2) # -> bool # True if every element of set_1 is also in set_2 set_1.issuperset(set_2) # -> bool # True if every element of set_2 is also in set_1 # SET COMPREHENSIONS var = {expression for element in sequence if condition} # SLICE OBJECT # [start: stop: step] -> slice object (start, stop, step) var_1 = slice(start, stop, step) # assignment to variable var_2[var_1] # same as var_2 [start: stop: step] # ELLIPSIS OBJECT var[i, ...] # -> shortcut for var [i,:,:,:,] # used for multidimensional slices (NumPy, ...) ``` ## Bytes e Bytearray ```py # THE BYTES CANNOT BE MODIFIED OR INDEXED # THE BYTEARRAYS CAN BE MODIFIED AND INDEXED # YOU CANNOT DO REPETITION AND SLICING ON BYTE OR BYTEARRAY b = bytes(list) ba = bytearray(list) # item of bytes and bytearray is always integer between 0 and 255 # slice of bytes and bytearray is binary sequence (even if len = 1) # BYTES AND BYTEARRAY METHODS bytes.fromhex(pair_hex_digits) # -> byte literal b'bite_literal'.hex() # -> str # returns a string containing hex digit pairs bytearray.fromhex(pair_hex_digits) # -> byte literal bytes.count(subseq, start, end) # returns subseq appearance count between start and end positions bytearray.count(subseq, start, end) # returns subseq appearance count between start and end positions ``` ## Encoding-Decoding & Unicode Unicode Literals: - `\u0041` --> 'A' - `\U00000041` --> 'A' - `\x41` --> 'A' ```py # ENCODING # transform string into literal byte # UnicodeEncodeError on error # errors = ignore -> skip error-causing characters # errors = replace -> replace? to characters causing error # errors = xmlcharrefreplace -> substitutes XML entities for error-causing characters string.encode('utf-8', errors = 'replace') # -> b'byte literals' # BOM (BYTE ORDER MARK) # byte literal given to indicate byte ordering (little-endian vs big-endian) # in little-endian the least significant bytes come first (e.g. U + 0045 -> DEC 069 -> encoded as 69 and 0) # U + FEFF (ZERO WIDTH NO-BREAK SPACE) -> b '\ xff \ xfe' indicates little-endian # DECODING # transform byte literal to string # error = 'replace' replaces errors (byte literals not belonging to decoding format) with U + FFFD "REPLACEMENT CHARACTER" bytes.decode ('utf-8', errors = 'replace') # -> str # UNICODE NORMALIZATION # handling canonical unicode equivalents (e.g. é, and \ u0301 are equivalent for unicode) unicodedata.normalize(form, unicode_string) # FORM: NFC, NFD, NFCK, NFDK # NFC -> "Normalization Form C" -> produces the shortest equivalent string # NFD -> "Normalization Form D" -> produces the longest equivalent string # CASE FOLDING UNICODE # transform to lowercase with some differences (116 differences, 0.11% of Unicode 6.3) string.casefold() # USEFUL FUNCTIONS FOR NORMALIZED EQUIVALENCE (Source: Fluent Python p. 121, Luciano Ramalho) from unicodedata import normalize def nfc_eual(str_1, str_2): return (normalize('NFC', str1) == normalize('NFC', str2)) def fold_equal (str_1, str_2): return (normalize('NFC', str_1).casefold() == normalize('NFC', st_2).casefold()) ``` ## Memoryview ```py # memoryview objects allow python to access the data inside the object # without copy if it supports the buffer protocol v = memoryview(object) # create a memoryview with reference to object # slice of memoryview produces new memoryview # MEMORYVIEW METHODS v.tobytes() # return data as bytestring, equivalent to bytes (v) v.hex() # returns string containing two hex digits for each byte in the buffer v.tolist() # returns the data in the buffer as a list of elements v.toreadonly() v.release() # release the buffer below v.cast(format, shape) # change the format or shape of the memoryview see object # object of the memoryview v.format # format of the memoryview v.itemsize # size in bytes of each element of the memoryview v.ndim # integer indicating the size of the multidimensional array represented v.shape # tuple of integers indicating the shape of the memoryview ``` | Format String | C Type | Python Type | Standard Size | | ------------- | -------------------- | ----------- | ------------- | | `x` | `pad byte` | `no value` | | `c` | `char` | `bytes` | `1` | | `b` | `signed char` | `integer` | `1` | | `B` | `unsigned char` | `integer` | `1` | | `?` | `_Bool` | `bool` | `1` | | `h` | `short` | `integer` | `2` | | `H` | `unsigned short` | `integer` | `2` | | `i` | `int` | `integer` | `4` | | `I` | `unsigned int` | `integer` | `4` | | `l` | `long` | `integer` | `4` | | `L` | `unsigned long` | `integer` | `4` | | `q` | `long long` | `integer` | `8` | | `Q` | `unsigned long long` | `integer` | `8` | | `n` | `ssize_t` | `integer` | | `N` | `size_t` | `integer` | | `f` | `float` | `float` | `4` | | `F` | `double` | `float` | `8` | | `s` | `char[]` | `bytes` | | `P` | `char[]` | `bytes` | ## Dictionaries ```py # SET OF KEY-VALUE PAIRS d = {1: 'Alex', 2: 'Bob', 3: 'Carl'} d = dict (one = 'Alex', two = 'Bob', three = 'Carl') d = dict (zip ([1,2,3], ['Alex', 'Bob', 'Carl'])) d = dict ([(1, 'Alex'), (2, 'Bob'), (3, 'Carl')]) d[key] # returns value associated with key d[4] = 'Dan' # add or change element list(d) # returns a list of all elements len(d) # returns the number of elements del(d[2]) # delete element # DICTIONARY METHODS d.clear() # remove all elements d.copy() # shallow copy of the dictionary d.get(key) # returns the value associated with key d.items() # return key-value pairs (view object) d.keys() # return dictionary keys (view object) d.values​​() # returns dictionary values ​​(view object) d.pop(key) # remove and return the value associated with key d.popitem() # remove and return the last key-value pair d.setdefault(key, default) # if the key is present in the dictionary it returns it, otherwise it inserts it with the default value and returns default d.update(iterable) # add or modify dictionary elements, argument must be key-value pair # DICT UNION d = {'spam': 1, 'eggs': 2, 'cheese': 3} e = {'cheese': 'cheddar', 'aardvark': 'Ethel'} d | e # {'spam': 1, 'eggs': 2, 'cheese': 'cheddar', 'aardvark': 'Ethel'} e | d # {'aardvark': 'Ethel', 'spam': 1, 'eggs': 2, 'cheese': 3} d |= e # {'spam': 1, 'eggs': 2, 'cheese': 'cheddar', 'aardvark': 'Ethel'} # NESTED DICTIONARIES (it is possible to nest dictionaries within dictionaries) my_dict = {'key_1': 123, 'key_2': [12, 23, 33], 'key_3': ['item_0', 'item_1', 'item_2']} my_dict ['key'][0] # returns nested element # DICT COMPREHENSIONS var = {key: value for element in sequence} ``` ## Operators ### Mathematical Operators | Operator | Operation | | -------- | ------------------------------ | | x `+` y | addition, string concatenation | | x `-` y | subtraction | | x `*` y | multiplication | | x `*+` y | exponentiation | | x `/` y | division (result always float) | | x `//` y | integer division | | x `%` y | modulo, remainder | ### Relational Operators | Operator | Operation | | -------- | ------------------- | | x `<` y | less than | | x `<=` y | less or equal to | | x `>` y | greater than | | x `>=` y | greater or equal to | | x `==` y | equality | | x `!=` y | inequality | ### Assignment | Operator | Operation | | --------- | ---------- | | x `+=` y | x = x + y | | x `-=` y | x = x - y | | x `*=` y | x = x \* y | | x `/=` y | x = x / y | | x `//=` y | x = x // y | | x `%=` y | x = x % y | | x `<<=` y | x = x << y | | x `>>=` y | x = x >> y | | x `&=` y | x = x & y | | x ` | =` y | x = x | y | | x `^=` y | x = x ^ y | ### Bitwise Operators | Operator | Operation | | -------- | --------------- | | `~`x | bitwise NOT | | x `&` y | bitwise AND | | x `^` y | bitwise XOR | | x `|` y | bitwise OR | | x `<<` y | left bit shift | | x `>>` y | right bit shift | ### Logical Operators | Operator | Operation | | -------- | ----------- | | `and` | logical AND | | `or` | logical OR | | `not` | logical NOT | ### Identity Operators | Operator | Operation | | -------- | -------------------- | | `is` | reference equality | | `is not` | reference inequality | ### Membership Operators | Operator | Operation | | -------- | ---------------------- | | `in` | item in collection | | `not in` | item not in collection | ### OPerator Precedence 1. assignment operators `+=`, `-=`, `*=`, `/=`, `%=`, `**=`, `//=` 2. binary arithmetic operators `*`, `/`, `%`, `//` (floor division) 3. binary arithmetic operators `+`, `-` 4. boolean operators `<`, `>`, `<=`, `>=` 5. boolean operators `==`, `!=` 6. boolean operator `and` 7. boolean operator `or` 8. boolean operator `not` ## Conditional Statements Any object can be tested for truth value for use in an if or while condition or as operand of the Boolean operations. built-in objects considered *false*: - constants defined to be false: `None` and `False`. - zero of any numeric type: `0`, `0.0`, `0j`, `Decimal(0)`, `Fraction(0, 1)` - empty sequences and collections: `''`, `()`, `[]`, `{}`, `set()`, `range(0)` ### `if-else` ```py if (condition): # code here elif (condition): # code here else: # code here ``` ### Context Manager ```py with resource as target: # code here # start context manager and bind resource returned by method to target using as operator contextmanager.__enter__(self) # exit runtime context # returns exc_type, exc_value, traceback contextmanager.__exit__(self, exc_type, exc_value, traceback) # exc_type: exception class # exc_value: exception instance # traceback: traceback object # NO EXCEPTION -> returns None, None, None # SUPPRESSION EXCEPTION: Must return True value ``` ## Loops ### `while` ```py while(condition): # code here else: # executed only if condition becomes False # break, continue, return in block while do not perform else block # code here ``` ### `for` ```py for index in sequence: # sequence can be a list, set, tuple, etc .. # code here else: # executed only if for reaches the end of the loop # break, continue, return in block for do not perform else block # code here for index in range (start, end, step): # code here for key, value in dict.items (): # code here ``` ### `break` & `continue` `break`: causes the loop to exit immediately without executing subsequent iterations `continue`: skip the remaining iteration statements and continue the loop ### `range` ```py range(start, end, step) # generate sequence num integers (does not include num stops) with possible step list(range(start, end, step)) # return sequence of integers in a list ``` ### `enumerate` ```py enumerate(iterable) # iterable of item & index pairs list(enumerate(iterable)) # returns list of tuples [(1, iterable [0]), (2, iterable [1]), (3, iterable [2])] ``` ### `zip` ```py list_1 = [1, 2, 3, 4, 5] list_2 = ['a', 'b', 'c', 'd', 'e'] zip(list_1, list_2) # return zip object list(zip(list_1, list_2)) # returns list of tuples by merging list [(list_1 [0], list_2 [0]), (list_1 [1], list_2 [1]), ...] ``` ### `shuffle` & `randint` ```py from random import shuffle, randint shuffle(iterable) # shuffle the list randint(start, end) # returns a random integer between start and end ``` ### `in` ```py item in iterable # check for the presence of item in iterable (returns True or False) ``` ## Functions ### Function Definition ```py def function_name (parameters): "" "DOCSTRING" "" # code here return expression # if return id missing the function returns None ``` ### Specify Type Parameters In Functions - parameters before `/` can only be *positional* - parameters between `/` and `*` can be *positional* or *keyworded* - parameters after `*` can only be *keyworded* ```py def func (a, b, /, c, d, *, e, f): # code here ``` ### Docstring Style ```py """function description Args: argument: Type - description of the parameter Returns: Type - description of Raises: Exception: Cause of the exception """ ``` ### *args **kwargs `*args` allows the function to accept a variable number of parameters (parameters stored in a tuple) `**kwargs` allows the function to accept a variable number of key-value parameters (parameters stored in a dictionary) When used in combination `*args` always goes before`**kwargs` (in def function and in function call) ```py def func(*args, **kwargs): # code here ``` ### Function with default parameters ```py def function(parameter1 = value1, parameter2 = value3): # default values in case of omitted use of arguments in the call # code here return expression function(parameter2 = value2, parameter1 = value1) # arguments passed with keyword to enforce the order of reference ``` ### Global And Local Variables ```py # global scope def external_func(): # enclosing local scope def internal_func(): # local scope ``` **LEGB Rule**: - **L** - **Local**: Names assigned in any way within a function (`def` or `lambda`), and not declared global in that function. - **E** - **Enclosing function locals**: Names in the local scope of any and all enclosing functions (`def` or `lambda`), from inner to outer. - **G** - **Global** (module): Names assigned at the top-level of a module file, or declared global in a def within the file. - **B** - **Built-in** (Python): Names preassigned in the built-in names module : `open`, `range`, `SyntaxError`,... `Note`: variables declared inside a function are not usable outside ```py def function(): # global statement makes a variable global # actions on global variable within the function also have an effect outside global variable ``` ### Iterables, Iterators & Generators **Iterable**: object implementing `__iter __()`, sequences and objects supporting `__getitem__` with index `0` **Iterator**: object implementing `__next__` and `__iter__` (**iterator protocol**), when entirely consumed by `next()` it becomes unusable. Returns `StopIteration` when `next()` has returned all elements. **Generator Function**: function with keyword `yield` (if present also `return` causes `StopIteration`), returns a generator that produces the values ​​one at a time. **Generator Factory**: generator returning function (may not contain `yield`). Operation `iter()`: - calls `__iter__()` - in the absence of it python uses `__getitem__()` (if present) to create an iterator that tries to retrieve the items in order, starting from the index `0` - on failure it returns `TypeError` **Note**: `abc.Iterable` does not check for the presence of `__getitem__` to decide if a sub-object is a member therefore the best test for iterability is to use `iter()` and handle exceptions. ### `next()` & `iter()` ```py next(iterable) # next item of the iterable or error StopIteration iter(object) # get an iterator from an object # call callable_onj.next () with no arguments as long as it returns non-sentinel values iter(callable_obj, sentinel) ``` ### Customs Generators Used to generate a sequence of values to be used once (they are not stored) ```py def custom_generator(parameters): while condition: # or for loop yield variable # returns the value without terminating the function, values passed to the caller without storing in a variable # generator implementation for item in custom_generator(parameters): # code here ``` ### Termination Generator And Exception Handling ```py # raise exception at the suspension point and return generator value # if the generator terminates without returning values it raises StopIteration # if an exception is not handled it is propagated to the caller generator.throw(ExceptionType, exception_value, traceback) # raises GeneratorExit to the point of suspension # if generator returns a value -> RuntimeError # if an exception is raised it propagates to the caller generator.close() ``` ### Generator Comprehensions ```py # zero-length sequence (instantaneously generated values) var = (for expression iterable in sequence if condition) # EDUCATION ENUMERATE () # returns a list of tuples associating a position index to each element of the sequence # [(0, sequence [0]), (1, sequence [1]), (2, sequence [2]), ...) enumerate(sequence) # -> enumerate object ``` ## Coroutines ```py def simple_coroutine(): """coroutine defined as a generator: yield in block""" # yield in expression to receive data # returns None (no variables on the right of yield) var = yield value # returns value and then suspends coroutine waiting for input # instructions to the right of = executed before instructions to the left of = gen_obj = simple_coroutine() # returns generator object next(gen_obj) # start coroutine (PRIMING) gen_obj.send(None) # start coroutine (PRIMING) gen_obj.send(value) # send value to the coroutine (only possible in suspended state) # STATES OF COROUTINE inspect.generatorstate() # returns the status of the coroutine # GEN_CREATED: waiting to start execution # GEN_RUNNING: currently run by the interpreter (visible if multithreaded) # GEN_SUSPENDED: currently suspended by yield statement # GEN_CLOSED: execution completed successfully # COROUTINE PRIMING from functools import wraps def coroutine(func): "Decorator: primes 'func' by advancing to first 'yield'" @wraps(func) def primer(*args, **kwargs): gen = func(*args, **kwargs) next(gen) return gen return primer # COROUTINE TERMINATION AND EXCEPTION HANDLING # exceptions in unhandled coroutines propagate to subsequent iterations # an exception causes the coroutine to terminate which it cannot resume # yield raises exception, if handled loop continues # throw() returns value of the generator coroutine.throw(exc_type, exc_value, traceback) # yield raises GeneratorExit to the suspension point # if the generator yields a value -> RuntimeError # if there are other exceptions they are propagated to the caller coroutine.close() # coroutine state becomes GEN_CLOSED ``` ### `yield from ` **Note**: auto-priming generators incompatible with `yield from` **DELEGATING GENERATOR**: generator function containing `yield from` **SUBGENERATOR**: generator obtained from `yield from` **CALLER-CLIENT**: code calling *delegating generator* The main function of `yield from` is to open a bidirectional channel between the external caller (* client *) and the internal * subgenerator * so that values and exceptions can pass between the two. 1. client calls delegating generator, delegating generator calls subgenerator 2. exhausted subgenerator returns value to `yield from ` (`return ` statement) 3. delegating generator returns `` to client - Any values that the subgenerator yields are passed directly to the caller of the delegating generator (i.e., the client code). - Any values sent to the delegating generator using `send()` are passed directly to the subgenerator. - If the sent value is `None`, the subgenerator's `__next__()` method is called. - If the sent value is not `None`, the subgenerator's `send()` method is called. - If the call raises `StopIteration`, the delegating generator is resumed. - Any other exception is propagated to the delegating generator. - `return ` in a generator (or subgenerator) causes `StopIteration()` to be raised upon exit from the generator. - The value of the `yield from` expression is the first argument to the `StopIteration` exception raised by the subgenerator when it terminates. - Exceptions other than `GeneratorExit` thrown into the delegating generator are passed to the `throw()` method of the subgenerator. - If the call raises `StopIteration`, the delegating generator is resumed. - Any other exception is propagated to the delegating generator. - If a `GeneratorExit` exception is thrown into the delegating generator, or the `close()` method of the delegating generator is called, then the `close()` method of the subgenerator is called if it has one. - If this call results in an exception, it is propagated to the delegating generator. - Otherwise, `GeneratorExit` is raised in the delegating generator ```py def sub_gen(): sent_input = yield # result of sub_gen() returned to delegating_gen() # result of yield from return result def delegating_gen(var): var = yield from sub_gen() # get values from sub_gen def client(): result = delegating_gen() # use delegating_gen result.send(None) # terminate sub_gen instance (IMPORTANT) ``` ## LAMBDA Functions Possible use within functions. Useful for replacing functions if the logic is simple. ```py var = lambda argument_list: ``` ## Object Oriented Programming ### Class Definition ```py class Class: static_var = expression def __init__(self, value_1, value_2): # parameterized default constructor self.variable = value_1 # create instance variables self.__private = value_2 # private, accessed via NAME MANGLING def method(self, parameters): ... @staticmethod def static_method(parameters): # static methods do not affect instance variables (SELF not needed) ... @classmethod # method acting on the class and not on the object (useful for alternative constructors) def class_method(cls, parameters): ... object = Class(parameters) # creation of an object object.variable = expression # edit public variable object.method(parameters) # invocation method of instance object._Class__private # access to variable specifying the membership class (NAME MANGLING) Class.method(parameters) # static method invocation ``` ### Setter & Getter with `@Property` ```py class Class: def __init__(self, parameter): self.__parameter = parameter @property # getter def parameter(self): return self.__parameter @.setter def parameter(self, value): self.__parameter = value ``` ### `__slots__` The `__slots__` attribute implements the **Flyweight Design Pattern**: it saves the instance attributes in a tuple and can be used to decrease the cost in memory by inserting only the instance variables into it (suppress the instance dictionary). **Default**: attributes saved in a dictionary (`object .__ dict__`) **Usage**: `__slots_ = [attributes]` `__slots__` is not inherited by subclasses, it prevents dynamically adding attributes. ### Inner Classes ```py class Class: def __init__(self, parameters): ... class InnerClass: def __init__(self, parameters): ... def method(self): ... object_1 = Class(arguments) # create 'external' class object_2 = Class.InnerClass(arguments) # inner class created as object of the 'external' class ``` ### Special Methods Special methods are defined by the use of double underscores; they allow the use of specific functions (possibly adapted) on the objects defined by the class. ```py class Class(): def __init__(self, parameters): instructions # used by str() and print() method # handle requests for impersonation as a string def __str__ (self): return expression # return required def __len__ (self): return expression # must return as len requires a length / size def __del__ (self): # delete the class instance instruction # any instructions that occur on deletion object = Class() len(object) # special function applied to an object del object # delete object ``` #### Special Methods List **Note**: if the operator cannot be applied, returns `NotImplemented` ```py # arithmetic operators __add__(self, other) # + __sub__(self, other) # - __mul__(self, other) # * __matmul__(self, other) # (@) matrix multiplication __truediv__(self, other) # / __floordiv__(self, other) # // __mod__(self, other) # % __divmod__(self, other) # divmod() __pow__(self, other) # **, pow() __lshift__(self, other) # << __rshift__(self, other) # >> __and__(self, other) # & __xor__(self, other) # ^ __or__(self, other) # | # reflex arithmetic operators # if self.__ dunder __(other) fails, other.__ dunder__(self) is called __radd__(self, other) # reverse + __rsub__(self, other) # reverse - __rmul__(self, other) # reverse * __rmatmul__(self, other) # reverse @ __rtruediv__(self, other) # reverse / __rfloordiv__(self, other) # reverse // __rmod__(self, other) # reverse % __rdivmod__(self, other) # reverse divmod() __rpow__(self, other) # reverse **, pow() __rlshift__(self, other) # reverse << __rrshift__(self, other) # reverse >> __rand__(self, other) # reverse & __rxor__(self, other) # reverse ^ __ror__(self, other) # reverse | # in-place arithmetic operators # base implementation (built-in) like self = self other #! not to be implemented for immutable objects! #! in-place operators return self! __iadd__(self, other) # += __isub__(self, other) # -= __imul__(self, other) # *= __imatmul__(self, other) # @= __itruediv__(self, other) # /= __ifloordiv__(self, other) # //= __imod__(self, other) # %= __ipow__(self, other) # **= __ilshift__(self, other) # <<= __irshift__(self, other) # >>= __iand__(self, other) # &= __ixor__(self, other) # ^= __ior__(self, other) # |= # unary mathematical operators (-, +, abs (), ~) __neg__(self) # (-) negazione matematica unaria [if x = 2 then -x = 2] __pos__(self) # (+) addizione unaria [x = +x] __abs__(self) # [abs()] valore assoluto [|-x| = x] __invert__(self) # (~) inversione binaria di un intero [~x == -(x + 1)] # numeric type conversion __complex__(self) __int__(self) # if not defined fall-back on __trunc__() __float__(self) __index__(self) # conversion in bin(), hex(), oct() e slicing # operations round() math.trunc(), math.floor(), math.ceil() __round__(self) __trunc__(self) __floor__(self) __ceil__(self) # equality operators self.__eq__(other) # self == other self.__ne__(other) # self != other self.__gt__(other) # self > other self.__ge__(other) # self >= other self.__lt__(other) # self < other self.__le__(other) # self <= other # reflected equality operators other.__eq__(self) # other == self, fall-back id(self) == id(other) other.__ne__(self) # other != self, fall-back not (self == other) other.__gt__(self) # reverse self < other, fall-back TypeError other.__ge__(self) # reverse self <= other, fall-back TypeError other.__lt__(self) # reverse self > other, fall-back TypeError other.__le__(self) # reverse self >= other, fall-back TypeError # called when the instance is "called" as a function # x (arg1, arg2, arg3) is short for x .__ call __ (arg1, arg2, arg3) __call__(self, args) # string object representation for the developer __repr__(self) # string object representation for user (used by print) __str__(self) # specify formatting for format ), str.format() [format_spec = format-mini-language] __format__(format_spec) # returns unique (integer) value for objects that have equal value # __EQ__ MUST EXIST IN THE CLASS, usually hash((self.param_1, self.param_2, ...)) __hash__(self) # makes object iterable: # - returning self (in the iterator) # - returning an iterator (in the iterable) # - using yield (in the __iter__ generator) __iter__(self) # returns next available element, StopIteration otherwise (iterator scrolls) __next__() # returns truth value __bool__() # returns item associated with key of a sequence (self [key]) # IndexError if key is not appropriate __getitem__(self, key) # item assignment operation in sequence (self [key] = value) # IndexError if key is not appropriate __setitem__(self, key, value) # operation deleting item in sequence (del self [key]) # IndexError if key is not appropriate __delitem__(self, key) # called by dict.__getitem__() to implement self [key] if key is not in the dictionary __missing__(self, key) # implement container iteration __iter__(self) # implement membership test __contains__(self, item) # implementation issublass (instance, class) __instancecheck__(self, instance) # implementation issubclass (subclass, class) __subclasscheck__(self, subclass) # implement attribute access (obj.name) # called if AttributeError happens or if called by __getattribute __() __getattr__(self, name) # implement value assignment to attribute (obj.name = value) __setattr__(self, name, value) ``` **Note**: Itearbility is tricky. To make an object directly iterable (`for i in object`) `__iter__()` and `__next__()` are needed. To make an iterable through an index (`for i in range(len(object)): object[i]`) `__getitem()__` is needed. Some of the mixin methods, such as `__iter__()`, `__reversed__()` and `index()`, make repeated calls to the underlying `__getitem__()` method. Consequently, if `__getitem__()` is implemented with constant access speed, the mixin methods will have linear performance; however, if the underlying method is linear (as it would be with a linked list), the mixins will have quadratic performance and will likely need to be overridden. ### Inheritance ```py class Parent (): def __init __ (self, parameters): ... def method_1(self): ... def method_2(self): ... class Child(Parent): # parent class in parentheses to inherit variables and methods def __init__(self, parameters, parent_parameters): Parent.__init__(self, parent_parameters) # inherit parent variables ... def method (self): ... def method_parent_1 (self): # override method (child class with homonymous method to parent class) ... class Child(Parent): # parent class in brackets to inherit properties def __init__(self, parameters, parent_parameters): super().__init__(parent_parameters) # different method to inherit parent variables (SELF not needed) using SUPER() super(Parent, self).__init__(parent_parameters) # parent constructor invoked separately def method(self): ... def method_2(self): # parent method updated super().method_2() # invoke parent method as is ... ``` ### Polymorphism **Note**: python does not support method overloading ```py # DUCKTYPING # Working with objects regardless of their type, as long as they implement certain protocols class Class1: def method_1(self): ... class Class2: def method_1(self): ... # since python is a dynamic language it doesn't matter what type (class) the object passed is # the function invokes the object method passed regardless of the object class def polymorph_method(object): object.method_1() # DEPENDENCY INJECTION WITH DUCKTYPING class Class: def __init__(self, object): self.dependency = object def method_1(self): # the function invokes the method of the object passed self.dependency.method_1() ``` ### Operator Overloading **Operators fundamental rule**: *always* return an object, if operation fails return `NotImplemented` Limitations of operator overloading: - no overloading of built-in types - no creation of new operators - no overloading operators `is`, `and`, `or`, `not` ### Astrazione The **interfaces** are abstract classes with *all* abstract methods, they are used to indicate which methods such as child classes *must* have. Interfaces have *only* a list of abstract methods. **abstract classes** have *at least* one abstract method; child classes that inherit from an abstract class *must* implement abstract methods. Abstract classes *cannot* be instantiated. Virtual subclasses are used to include third-party classes as subclasses of a class of their own. They are recognized as belonging to the parent class without however having to implement their methods. The `@Class.register` or `Class.register(subclass)` decorators are used to mark subclasses. ```py from abc import abstractmethod, ABC class Abstract(ABC): # abstract class MUST INHERIT from parent class ABC def __init__(self, parameters): ... def parent_method (self): ... @abstractmethod # abstract method MUST be marked with @abstractmethod decorator def abstract_method (self): pass # abstract method MUST be overridden (can be non-empty) # super() to invoke it in the concrete class class Child(Abstract): def __init__(self, parameters, parent_parameters): parent_class.__init__(self, parent_parameters) def method (self): ... def parent_method (self): # override method (child class with homonymous method to parent class) ... def abstract_method (self): # implementation of abstract method inherited from abstract class (NECESSARY) by override ... ``` ## Exception Handling ```py # CHECK ASERATIONS assert condition, 'error message' # if the assertion is false show an error message # particular errors are objects of a particular class of exceptions which in turn is a child of the base exception class (exception) class CustomExceptionError(Exception): # MUST somehow inherit from class exception (even in later inheritance steps) pass # or instructions # try block contains code that might cause an exception # code inside try and after the error it is not executed try: ... raise CustomExceptionError ("message") # raise the exception # except takes control of error handling without passing through the interpreter # block executed if an error occurs in try # except error specified by class except ExceptionClass: # Default error message is not shown # the program does not stop # except on generic errors except: # code here # block executed if exception does not occur else: # code here # block executed in all cases, cleanup code goes here finally: # code here ``` ## File ### Opening A File Text file opening mode: - `w`: write, overwrite the contents of the file - `r`: read, read file contents - `a`: append, add content to the file - `w +`: write & read - `r +`: write & read & append - `a +`: append & read - `x`: exclusive creation, if the file already exists -> `FileExistError` (extended write mode) Open binary file mode: - `wb`: write, overwrites the contents of the file - `rb`: read, read file contents - `ab`: append, add content to the file - `w + b`: write & read - `r + b`: write & read & append - `a + b`: append & read - `xb`: exclusive creation, if the file already exists -> `FileExistError` (extended write mode) **Note**: Linux and MacOSX use `UTF-8` everywhere while windows uses `cp1252`, `cp850`,`mbcs`, `UTF-8`. Don't rely on default encoding and use **explicitly** `UTF-8`. ```py object = open('filename', mode = 'r', encoding = 'utf-8') # encoding MUST BE utf-8 for compatibility # filename can be the absolute path to the file location (default: file created in the source code folder) # double slash to avoid \ escaping with open('filename') as file: instructions_to_file # block use filename to indicate file # CLOSE A FILE object.close() # WRITE TO A FILE object.write(string) # write single string to file object.writelines(* strings) # write multiple strings to file # READING FROM A FILE object.read() # return ALL the contents of the file (including escape sequence) and place the "cursor" at the end of the file object.seek(0) # returns 0 (zero) and places the cursor at the beginning of the file object.readlines() # return list of file lines (ATTENTION: keep everything in memory, be careful with large files) object.readline() # returns single line file # CHECK FILE EXISTENCE import os, sys if os.path.isfile('filepath'): # check file existence (TRUE if it exists) # code here else: # code here sys.exit() # exits the program and does not execute the next cosice ``` ## COPY **SHALLOW COPY**: copies the "container" and references to the content **DEEP COPY**: copies the "container" and contents (no reference) ```py copy (x) # returns shallow copy of xor deepcopy (x) # returns shallow copy of x ```