
 1

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears2, Catharine van Ingen1, Jim Gray1

1: Microsoft Research, 2: University of California at Berkeley
sears@cs.berkeley.edu, vanIngen@microsoft.com, gray@microsoft.com

April 2006

Technical Report
MSR-TR-2006-45

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

 2

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears2, Catharine van Ingen1, Jim Gray1
1: Microsoft Research, 2: University of California at Berkeley

sears@cs.berkeley.edu, vanIngen@microsoft.com, gray@microsoft.com
MSR-TR-2006-45

April 2006

Abstract
Application designers must decide whether to store
large objects (BLOBs) in a filesystem or in a
database. Generally, this decision is based on factors
such as application simplicity or manageability.
Often, system performance affects these factors.

Folklore tells us that databases efficiently handle
large numbers of small objects, while filesystems are
more efficient for large objects. Where is the
break-even point? When is accessing a BLOB stored
as a file cheaper than accessing a BLOB stored as a
database record?

The simple answer is: BLOBs smaller than
256KB are more efficiently handled by a database,
while a filesystem is more efficient for those greater
than 1MB. Of course, this will vary between
different databases and filesystems.

By measuring the performance of a storage
server that mimics common workloads we found that
the break-even point depends on many factors.
However, our experiments suggest that storage age,
the ratio of bytes in deleted objects to bytes in live
objects, is dominant. As storage age increases,
fragmentation tends to increase. The filesystem we
study has better fragmentation control than the
database we used, suggesting the database system
would benefit from incorporating ideas from
filesystem design. Conversely, filesystem
performance may be improved by using database
techniques to handle many small files.

Surprisingly, for these studies, when average
object size is held constant, the distribution of object
sizes did not significantly affect performance. We
also found that, in addition to low percentage free
space, a low ratio of free space to average object size
leads to fragmentation and performance degradation.

1. Introduction
Application data objects are getting larger as digital
media becomes ubiquitous. Application designers
have the choice of storing large objects as files in the
file system, as BLOBs (binary large objects) in a
database, or as a combination of both. Only folklore
is available regarding the tradeoffs – often the design

decision is based on which technology the designer
knows best. Most designers will tell you that a
database is probably best for small binary objects and
that that files are best for large objects. But, what is
the break-even point? What are the tradeoffs?

This article characterizes the performance of an
abstracted typical web application that deals with
relatively large objects. Two versions of the system
are compared; one uses a relational database to store
large objects, while the other version stores the
objects as files in the filesystem. We measure how
the performance changes over time as the storage
becomes fragmented. The article concludes by
describing and quantifying the factors that a designer
should consider when picking a storage system. It
also suggests filesystem and database improvements
for large object support.

One surprising (to us at least) conclusion of our
work is that storage fragmentation is the main
determinant of the break-even point in the tradeoff.
Therefore, much of our work and much of this article
focuses on storage fragmentation issues. In essence,
file systems seem to have better fragmentation
handling than databases and this drives the
break-even point down from about 1MB to about
256KB.

2. Background
2.1. Fragmentation
Filesystems have long used sophisticated allocation
strategies to avoid fragmentation while laying out
objects on disk. For example, OS/360’s filesystem
was extent based and clustered extents to improve
access time. The VMS filesystem included similar
optimizations and provided a file attribute that
allowed users to request a (best effort) contiguous
layout [McCoy, Goldstein]. Berkeley FFS
[McKusick] was an early UNIX filesystem that took
sequential access, seek performance and other
hardware characteristics into account when laying
data out on disk. Subsequent filesystems were built
with similar goals in mind.

 3

The file system used in these experiments,
NTFS, uses a ‘banded’ allocation strategy for
metadata, but not for file contents [NTFS]. NTFS
allocates space for file stream data from a run-based
lookup cache. Runs of contiguous free clusters are
ordered in decreasing size and volume offset. NTFS
attempts to satisfy a new space allocation from the
outer band. If that fails, large extents within the free
space cache are used. If that fails, the file is
fragmented. Additionally, when a file is deleted, the
allocated space cannot be reused immediately; the
NTFS transactional log entry must be committed
before the freed space can be reallocated. The net
behavior is that file stream data tends to be allocated
contiguously within a file.

In contrast, database systems began to support
large objects more recently [DeWitt]. They
historically focused on small (100 byte) records and
on clustering tuples within the same table. Clustered
indexes let users control the order in which tuples are
stored, allowing common queries to be serviced with
a sequential scan over the data.

Filesystems and databases take different
approaches to modifying an existing object.
Filesystems are optimized for appending or
truncating a file. In-place file updates are efficient,
but when data are inserted or deleted in the middle of
a file, all contents after the modification must be
completely re-written. Some databases completely
rewrite modified blobs; this rewrite is transparent to
the application. Others, such as SQL Server, support
efficient insertion or deletion within an object if the
change is aligned on database pages. (How likely that
may be depends on how well the database page aligns
to the application change to the object.) Still others,
such as Exodus [DeWitt], use B-Tree based storage
of large objects, and allow efficient insertion and
deletion of arbitrary size data at arbitrary offset
within an object.

Of course the application can do its own
fragmentation. Some applications simply store each
object directly in the database as a single blob, or as a
single file in a file system. However, in order to
efficiently service user requests, other applications
use more complex allocation strategies. For instance,
objects may be partitioned into many smaller chunks
stored as blobs. Video streams are often “chunked”
in this way. Alternately, smaller objects may be
aggregated into a single blob or file – for example
TAR, ZIP, or CAB files.

2.2. Safe writes
This study only considers applications that overwrite
entire objects. Such applications do not force the
storage system to understand their data’s structure,
trading opportunities for optimization for simplicity

and robustness. Even this simple update policy is not
entirely straightforward. This section will describe
mechanisms that safely update entire objects at once.

Most filesystems protect internal metadata
structures (such as directories and filenames) from
corruption due to dirty shutdowns (such as system
crashes and power outages). However, there is no
such guarantee for file contents. In particular, file
systems and the operating system below them reorder
write requests to improve performance. Only some of
those requests may complete at dirty shutdown.

As a result, many desktop applications use a
technique called a “safe write” to achieve the
property that, after a dirty shutdown, the file contents
are either new or old but not a mix of old and new.
While safe-writes ensure that an old file is robustly
replaced, they also force a complete copy of the file
to disk even if most of the file contents are
unchanged.

To perform a safe write, a new version of the file
is created with a temporary name. Next, the new data
is written to the temporary file and those writes are
flushed to disk. Finally, the new file is renamed to the
permanent file name, thereby deleting the file with
the older data. Under UNIX, rename() is guaranteed
to atomically overwrite the old version of the file.
Under Windows, the ReplaceFile() call is used to
atomically replace one file with another.

In contrast, databases typically offer
transactional updates, which allow applications to
group many changes into a single atomic unit called a
transaction. Complete transactions are applied to the
database atomically regardless of system dirty
shutdown, database crash, or application crashes.
Therefore, applications may safely update their data
in whatever manner is most convenient. Depending
on the database implementation and the nature of the
update, it can be more efficient to update a small
portion of the blob instead of overwriting it
completely.

The database guarantees transactional semantics
by logging both metadata and data changes
throughout a transaction. Once the appropriate log
records have been flushed to disk, the associated
changes to the database are guaranteed to complete.
The log is written sequentially, and subsequent
database updates can be reordered to minimize seeks.
Log entries for each change must be written; but the
actual database writes can be coalesced – only the
last write to each page need actually occur.

Logging all data and metadata guarantees
correctness, but at the cost of writing all data twice.
With large data objects, this can put the database at a
noticeable performance disadvantage. The sequential
write to the database log is roughly equivalent to the
sequential write to a file. The additional write to the

 4

database pages will form an additional sequential
write if all database pages are contiguous or many
seek-intensive writes if the pages are not located near
each other. Large objects also fill the log causing the
need for more frequent log truncation and
checkpoint, which reduces opportunities to reorder
and combine page modifications.

2.3. Data centric web services
To provide an equitable comparison between the
filesystem and the database, we burdened the
application with detecting and repairing corrupt or
torn objects by using SQL Server’s bulk-logging
mode. Bulk-logging mode provides transactional
durability for data in tables, but, like a filesystem,
does not guarantee that large object data will be
consistent after a dirty shutdown.

Our database and file system based storage
systems both provide transactional updates to object
metadata. Both write the large object data once and
only once. Neither guarantees that large object data
are updated correctly across system or application
outages.

While handling corrupt objects sounds like a
significant burden, the necessary detection and repair
mechanisms are often built into large scale web
services which use replication. Such services are
typically supported by very large, heterogeneous
networks built from low cost, unreliable components.
System crashes and hardware faults that silently
corrupt data are not uncommon. Applications
deployed on such systems must regularly check for
and recover from corrupted application data. When
corruption is detected, intact versions of the affected
data can be copied from another replica.

After a crash, a replica could manually check any
objects that may have been partially updated when
the crash occurred, and obtain good copies from other
replicas when necessary. This study does not
consider the overhead that recovery mechanisms and
detection of silent data corruption would entail. This
allows us to provide a meaningful comparison of the
performance of the two systems without tying the
results to a particular recovery or data scrubbing
implementation.

3. Prior work
While filesystem fragmentation has been studied
within numerous contexts in the past, we were
surprised to find relatively few systematic
investigations. There is common folklore passed by
word of mouth between application and system
designers. A number of performance benchmarks are
impacted by fragmentation, but these do not measure
fragmentation per se. There are algorithms used for

space allocation by database and filesystem
designers.

We found very little hard data on the actual
performance of fragmented storage. Moreover, recent
changes in application workloads, hardware models,
and the increasing popularity of database systems for
the storage of large objects present workloads not
covered by existing studies.

3.1. Folklore
There is a wealth of anecdotal experience with
applications that use large objects. The prevailing
wisdom is that databases are better for small objects
while filesystems are better for large objects. The
boundary between small and large is usually a bit
fuzzy. The usual reasoning is:

• Database queries are faster than file opens. The
overhead of opening a file handle dominates
performance when dealing with small objects.

• Reading or writing large files is faster than
accessing large database blobs. Filesystems are
optimized for streaming large objects.

• Database client interfaces aren’t good with large
objects. Remote database client interfaces such
as MDAC have historically been optimized for
short low latency requests returning small
amounts of data.

• File opens are CPU expensive, but can be easily
amortized over cost of streaming large objects.

None of the above points address the question of
application complexity. Applications that store large
objects in the filesystem encounter the question of
how to keep the database object metadata and the
filesystem object data synchronized. A common
problem is the garbage collection of files that have
been “deleted” in the database but not the filesystem.

Also missing are operational issues such as
replication, backup, disaster recovery, and
fragmentation.

3.2. Standard Benchmarks
While many filesystem benchmarking tools exist,
most consider the performance of clean filesystems,
and do not evaluate long-term performance as the
storage system ages and fragments. Using simple
clean initial conditions eliminates potential variation
in results caused by different initial conditions and
reduces the need for settling time to allow the system
to reach equilibrium.

Several long-term filesystem performance
studies have been performed based upon two general
approaches [Seltzer]. The first approach, trace based
load generation, uses data gathered from production
systems over a long period. The second approach,
and the one we adopt for our study, is vector based

 5

load generation that models application behavior as a
list of primitives (the ‘vector’), and randomly applies
each primitive to the filesystem with the frequency a
real application would apply the primitive to the
system.

NetBench [NetBench] is the most common
Windows file server benchmark. It measures the
performance of a file server accessed by multiple
clients. NetBench generates workloads typical of
office applications.

SPC-2 benchmarks storage system applications
that read and write large files in place, execute large
read-only database queries, or provide read-only
on-demand access to video files [SPC].

The Transaction Processing Performance
Council [TPC] have defined several benchmark
suites to characterize online transaction processing
workloads and also decision support workloads.
However, these benchmarks do not capture the task
of managing large objects or multimedia databases.

None of these benchmarks consider file
fragmentation.

3.3. Data layout mechanisms
Different systems take surprisingly different
approaches to the fragmentation problem.

The creators of FFS observed that for typical
workloads of the time, fragmentation avoiding
allocation algorithms kept fragmentation under
control as long as volumes were kept under 90% full
[Smith]. UNIX variants still reserve a certain amount
of free space on the drive, both for disaster recovery
and in order to prevent excess fragmentation.

NTFS disk occupancy on deployed Windows
systems varies widely. System administrators’ target
disk occupancy may be as low as 60% or over 90%
[NTFS]. On NT 4.0, the in-box defragmentation
utility was known to have difficulties running when
the occupancy was greater than 75%. This limitation
was addressed in subsequent releases. By Windows
2003 SP1, the utility included support for
defragmentation of system files and attempted partial
file defragmentation when full defragmentation is not
possible.

LFS [Rosenblum], a log based filesystem,
optimizes for write performance by organizing data
on disk according to the chronological order of the
write requests. This allows it to service write
requests sequentially, but causes severe
fragmentation when files are updated randomly. A
cleaner that simultaneously defragments the disk and
reclaims deleted file space can partially address this
problem.

Network Appliance’s WAFL (“Write Anywhere
File Layout”) [Hitz] is able to switch between
conventional and write-optimized file layouts

depending on workload conditions. WAFL also
leverages NVRAM caching for efficiency and
provides access to snapshots of older versions of the
filesystem contents. Rather than a direct
copy-on-write of the data, WAFL metadata remaps
the file blocks. A defragmentation utility is
supported, but is said not to be needed until disk
occupancy exceeds 90+%.

GFS [Ghemawat], a filesystem designed to deal
with multi-gigabyte files on 100+ terabyte volumes,
partially addresses the data layout problem by using
64MB blocks called ‘chunks’. GFS also provides a
safe record append operation that allows many
clients to simultaneously append to the same file,
reducing the number of files (and opportunities for
fragmentation) exposed to the underlying filesystem.
GFS records may not span chunks, which can result
in internal fragmentation. If the application attempts
to append a record that will not fit into the end of the
current chunk, that chunk is zero padded, and the new
record is allocated at the beginning of a new chunk.
Records are constrained to be less than ¼ the chunk
size to prevent excessive internal fragmentation.
However, GFS does not explicitly attempt to address
fragmentation introduced by the underlying file
system, or to reduce internal fragmentation after
records are allocated.

4. Comparing Files and
BLOBs
This study is primarily concerned with the
deployment and performance of data-intensive web
services. Therefore, we opted for a simple vector
based workload typical of existing web applications,
such as Hotmail, flickr, and MSN spaces. These sites
allow sharing of objects that range from small text
mail messages (100s of bytes) to photographs (100s
of KB to a few MB) to video (100s of MBs.)

The workload also corresponds to collaboration
applications such as SharePoint Team Services.
These applications enable rich document sharing
semantics, rather than simple file shares. Examples of
the extra semantics include document versioning,
content indexing and search, and rich role-based
authorization.

Many of these sites and applications use a
database to hold the application specific metadata
including that which describes the large objects.
Large objects may be stored in the database, in the
filesystem, or distributed between the database and
the filesystem. We consider only the first two options
here. We also did not include any shredding or
chunking of the objects.

 6

4.1. Test System Configuration
All the tests were performed on the system described
in Table 1: All test code was written using C# in
Visual Studio 2005 Beta 2. All binaries used to
generate tests were compiled to x86 code with
debugging disabled.

Table 1: Configurations of the test systems
Tyan S2882 K8S Motherboard,
1.8 Ghz Opteron 244, 2 GB RAM (ECC)
SuperMicro “Marvell” MV8 SATA controller
4 Seagate 400GB ST3400832AS 7200 rpm SATA
Windows Server 2003 R2 Beta (32 bit mode).
SQL Server 2005 Beta 2 (32 bit mode).

4.2. File based storage
For the filesystem based storage tests, we stored
metadata such as object names and replica locations
in SQL server tables. Each application object was
stored in its own file. The files were placed in a
single directory on an otherwise empty NTFS
volume. SQL was given a dedicated log and data
drive, and the NTFS volume was accessed via an
SMB share.

We considered a purely file-based approach, but
such a system would need to implement complex
recovery routines, would lack support for consistent
metadata, and would not provide functionality
comparable to the systems mentioned above.

This partitioning of tasks between a database and
filesystem is fairly flexible, and allows a number of
replication and load balancing schemes. For example,
a single clustered SQL server could be associated
with several file servers. Alternately, the SQL server
could be co-located with the associated files and then
the combination clustered. The database isolates the
client from changes in the architecture – changing the
pointer in the database changes the path returned to
the client.

We chose to measure the configuration with the
database co-located with the associated files. This
single machine configuration kept our experiments
simple. We avoided building assumptions and
dependencies on the network layout into the study.
However, we structured all code to use the same
interfaces and services as a networked configuration.

4.3. Database storage
The database storage tests were designed to be as
similar to the filesystem tests as possible. As
explained previously, we used bulk-logging mode.
We also used out-of-row storage for the application
data so that the blobs did not decluster the metadata.

Although the blob data and table information are
stored in the same file group, out-of-row storage

places blob data on pages that are distinct from the
pages that store the other table fields. This allows the
table data to be kept in cache even if the blob data
does not fit in main memory. Analogous table
schemas and indices were used and only minimal
changes were made to the software that performed
the tests.

4.4. Performance tuning
We set out to fairly evaluate the out-of-the-box
performance of the two storage systems. Therefore,
we did no performance tuning except in cases where
the default settings introduced gross discrepancies in
the functionality that the two systems provided.

We found that NTFS’s file allocation routines
behave differently when the number of bytes per file
write (append) is varied. We did not preset the file
size; as such NTFS attempts to allocate space as
needed. When NTFS detects large, sequential
appends to the end of a file its allocation routines
aggressively attempt to allocate contiguous space.
Therefore, as the disk gets full, smaller writes are
likely to lead to more fragmentation. While NTFS
supports setting the valid data length of a file, this
operation incurs the write overhead of zero filling the
file, so it is not of interest here [NTFS]. Because the
behavior of the allocation routines depends on the
size of the write requests, we use a 64K write buffer
for all database and file system runs. The files were
accessed (read and written) sequentially. We made
no attempt to pass hints regarding final object sizes to
NTFS or SQL Server.

4.5. Workload generation
Real world workloads have many properties that are
difficult to model without application specific
information such as object size distributions,
workload characteristics, or application traces.

However, the applications of interest are
extremely simple from a storage replica’s point of
view. Over time, a series of object allocation,
deletion, and safe-write updates are processed with
interleaved random read requests.

For simplicity, we assumed that all objects are
equally likely to be written and/or read. We also
assumed that there is no correlation between objects.
This lets us measure the performance of write-only
and read-only workloads.

We measured constant size objects rather than
objects with more complicated size distributions. We
expected that size distribution would be an important
factor in our experiments. As shown later, we found
that size distribution had no obvious effect on the
behavior. Given that, we chose the very simple
constant size distribution.

 7

4.6. Storage age
We want to characterize the behavior of storage
systems over time. Past fragmentation studies
measure age in elapsed time such as ‘days’ or
‘months.’ We propose a new metric, storage age,
which is the ratio of bytes in objects that once existed
on a volume to the number of bytes in use on the
volume. This definition of storage age assumes that
the amount of free space on a volume is relatively
constant over time.

For a safe-write system that is the ratio of object
insert-update-delete bytes over the number of total
object bytes. When evaluating a single node system
using trace-based data, storage age has a simple
intuitive interpretation.

A synthetic workload effectively speeds up
application elapsed time. Our workload is disk arm
limited; we did not include extra think time or
processor overheads. The speed up is application
specific and depends on the actual application
read:write ratio and heat.

We considered reporting time in “hours under
load”. Doing so has the undesirable property of
rewarding slow storage systems by allowing them to
perform less work during the test.

In our experimental setup, storage age is
equivalent to “safe writes per object.” This metric is
independent of the actual applied read:write load or
the number of requests over time. Storage ages can
be compared across hardware configurations and
applications. Finally, it is easy to convert storage age
to elapsed wall clock time after the rate of data churn,
or overwrite rate, of a specific system is determined.

5. Results
Our results use throughput as the primary indicator of
performance. We started with the typical
out-of-the-box throughput study. We then looked at
the longer term changes caused by fragmentation
with a focus on 256K to 1M object sizes where
filesystem and database have comparable
performance. Lastly, we discuss the effects of
volume size and object size on our measurements.

5.1. Database or Filesystem: Throughput
out-of-the-box
We begin by establishing when a database is clearly
the right answer and when the filesystem is clearly
the right answer.

Following the lead of existing benchmarks, we
evaluated the read performance of the two systems on
a clean data store. Figure 1 demonstrates the truth of
the folklore: objects up to about 1MB are best stored
as database blobs. Performance of SQL reads for
objects of 256KB was 2x better than NTFS; but the
systems had parity at 1MB objects, and beyond that
NTFS was the best choice.

The write throughput of SQL Server exceeded
that of NTFS during bulk load. With 512KB objects,
database write throughput was 17.7MB/s, while the
filesystem only achieved 10.1MB/s.

5.2 Database or Filesystem over time
Next, we evaluated the performance of the two
systems on large objects over time. If fragmentation
is important, we expect to see noticeable performance
degradation.

Read Throughput After Bulk load

0

2

4

6

8

10

12

256K 512K 1M
Object Size

M
B

/s
ec

Database
Filesystem

Figure 1: Read throughput immediately after bulk
loading the data. Databases are fastest on small
objects. As object size increases, NTFS
throughput improves faster than SQL Server
throughput.

 8

Our first discovery was that SQL Server does not
provide facilities to report fragmentation of large
object data or to defragment such data. There are
measurements and mechanisms for index
defragmentation. The recommended way to
defragment a large blob table is to create a new table
in large new file group, copy the old records to the
new table and drop the old table [SQL].

To measure fragmentation, we tagged each of
our objects with a unique identifier and a sequence
number at 1KB intervals. We also implemented a
utility that looks for the locations of these markers on
a raw device in a way that was robust to page
headers, and other artifacts of the storage system. In
other words, the utility measures fragmentation in the
same way regardless of whether the objects are stored
in the filesystem or the database. We ran our utility
against an NTFS volume to check that it reported
figures that agreed with the NTFS fragmentation
report.

The degradation in read performance for 256K,
512K, and 1MB blobs is shown in Figure 2. Each
storage age (2 and 4) corresponds to the time
necessary for the number of updates, inserts, or
deletes to be N times the number of objects in our
store since the bulk load (storage age 0) shown in

Figure 1. Fragmentation under NTFS begins to level
off over time. SQL Server’s fragmentation increases
almost linearly over time and does not seem to be
approaching any asymptote. This is dramatically the
case with very large (10MB) objects as seen in
Figure 3.

We also ran our load generator against an
artificially and pathologically fragmented NTFS
volume. We found that fragmentation slowly
decreased over time. The best-effort attempt to
allocate contiguous space actually defragments such
volumes. That experiment also suggests that NTFS is
indeed approaching an asymptote in Figure 3.

The degradation in write performance is shown
in Figure 4. In both systems, the write throughput
during bulk load is much better than read throughput
immediately afterward. This is not surprising, as the
storage systems can simply append each new file to
the end of allocated storage, avoiding seeks during
bulk load. On the other hand, the read requests are
randomized, and must incur the overhead of at least
one seek. After bulk load, the write performance of
SQL Server degrades quickly, while the NTFS write
performance numbers are slightly better than its read
performance.

Read Throughput After Two Overwrites

0

2

4

6

8

10

12

256K 512K 1M
Object Size

M
B

/s
ec

Database
Filesystem

Read Throughput After Four Overwrites

0

1

2

3

4

5

6

7

8

9

10

256K 512K 1M
Object Size

M
B

/s
ec

Database
Filesystem

Figure 2: Fragmentation causes read performance
to degrade over time. File system is less affected
by this than SQL Server. Over time NTFS
outperforms SQL Server when objects are larger
than 256KB.

Long Term Fragmentation With 10 MB Objects

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

Fr
ag

m
en

ts
/o

b
je

ct

Database
Filesystem

Figure 3: For large objects, NTFS deals with
fragmentation more effectively than SQL server.

512K Write Throughput Over Time

0

2

4

6

8

10

12

14

16

18

20

After bulk load (zero) Two Four
Storage Age

M
B

/s
ec

Database
Filesystem

Figure 4: Although SQL Server quickly fills a
volume with data, performance suffers when
existing objects are replaced.

 9

Note that these write performance numbers are
not directly comparable to the read performance
numbers in Figures 1 and 2. Read performance is
measured after fragmentation, while write
performance is the average performance during
fragmentation. To be clear, the “storage age four”
write performance is the average write throughput
between the read measurements labeled “bulk load”
and “storage age two.” Similarly, the reported write
performance for storage age four reflects average
write performance between storage ages two and
four.

The results so far indicate that as storage age
increases, 256KB, not 1MB is the cross over point
where filesystems out perform databases. Objects up
to about 256KB objects are best kept in the database;
larger objects should be in the filesystem.

To verify this, we attempted to run both systems
until the performance reached steady state.

Figure 5 indicates that fragmentation converges
to four fragments per file, or one fragment per 64KB,
in both the filesystem and database. This is
interesting because our tests use 64KB write requests,
again suggesting that the impact of write block size
upon fragmentation warrants further study. From this
data, we conclude that SQL Server indeed
outperforms NTFS on objects under 256KB, as
indicated by Figures 2 and 4.

5.3. Fragmentation effects of object size,
volume capacity, and write request size
Distributions of object size vary greatly from
application to application. Similarly, applications are
deployed on storage volumes of widely varying size
particularly as disk capacity continues to increase
dramatically.

This series of tests generated objects using a
constant size distribution and compared performance
when the sizes were uniformly distributed. Both sets
of objects had a mean size of 10MB.

Intuition suggested that constant size objects
should not lead to fragmentation. Deleting an initially
contiguous object leaves a region of contiguous free
space exactly the right size for any new object. As
shown in Figure 6, our intuition was wrong.

As long as the average object size is held
constant there is little difference between uniformly
distributed and constant sized objects. This suggests
that experiments that use extremely simple size
distributions can be representative of many different
workloads. This contradicts the approach taken by
prior storage benchmarks that make use of complex,
accurate modeling of application workloads. This
may well be due to the simple all-or-nothing access
pattern that avoids object extension and truncation,
and our assumption that application code has not
been carefully tuned to match the underlying storage
system.

The time it takes to run the experiments is
proportional to the volume’s capacity. When the
entire disk capacity (400GB) is used, some
experiments take a week to complete. Using a
smaller (although perhaps unrealistic) volume size,
allows more experiments; but how trustworthy are
the results?

As shown in Figure 7, we found that volume size

Long Term Fragmentation With 256K Objects

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

gm
en

ts
/o

b
je

ct

Database
Filesystem

Figure 5: For small objects, the systems have
similar fragmentation behavior.

Database Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

Fr
ag

m
en

ts
/o

bj
ec

t

Constant
Uniform

Filesystem Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

Fr
ag

m
en

ts
/o

bj
ec

t

Constant
Uniform

Figure 6: Fragmentation for large (10MB) blobs –
increases slowly for NTFS but rapidly for SQL.
However objects of a constant size show no better
fragmentation performance than objects of sizes
chosen uniformly at random with the same
average size.

 10

does not really affect performance for larger volume
sizes. However, on smaller volumes, we found that
as the ratio of free space to object size decreases,
performance degrades.

We did not characterize the exact point where
this becomes a significant issue. However, our results
suggest that the effect is negligible when there is 10%
free space on a 40GB volume storing 10MB objects,
which implies a pool of 400 free objects. With a
4GB volume with a pool of 40 free objects,
performance degraded rapidly.

6. Implications for system
designers
This article has already mentioned several issues that
should be considered during application design.
Designers should provision at least 10% excess
storage capacity to allow each volume to maintain
free space for many (~400 in our experiment) free
objects. If the volume is large enough, the
percentage free space becomes a limiting factor. For
NTFS, we can see this in Figure 7, where the
performance of a 97.5% full 400GB volume is worse
than the performance of a 90% full 40GB volume.
(A 99% full 400GB volume would have the same
number of free objects as the 40GB volume.)

While we did not carefully characterize the
impact of application allocation routines upon the
allocation strategy used by the underlying storage
system, we did observe significant differences in
behavior as we varied the write buffer size.
Experimentation with different buffer sizes, or other
techniques that avoid incremental allocation of
storage may significantly improve long run storage
performance. This also suggests that file system
designers should re-evaluate what is a “large” request
and be more aggressive about coalescing larger
sequential requests.

Simple procedures such as manipulating write
size, increasing the amount of free space, and
performing periodic defragmentation can improve the
performance of a system. When dealing with an
existing system, tuning these parameters may be
preferable to switching from database to file system
storage, or vice versa.

When designing a new system, it is important to
consider the behavior of a system over time instead of
looking only the performance of a clean system. If
fragmentation is a significant concern, the system
must be defragmented regularly. Defragmentation of
a filesystem implies significant read/write impacts or
application logic to garbage collect and reinstantiate a
volume. Defragmentation of a database requires
explicit application logic to copy existing blobs into a
new table. To avoid causing still more
fragmentation, that logic must be run only when
ample free space is available. A good database
defragmentation utility (or at least good automation
of the above logic including space estimation
required) would clearly help system administrators.

Using storage age to measure time aids in the
comparison of different designs. In this study we use
“safe-writes per object” as a measurement of storage
age. In other applications, appends per object or
some combination of create/append/deletes may be
more appropriate.

Database Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Storage Age

Fr
ag

m
en

ts
/o

b
je

ct

50% full - 40G
50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

Fr
ag

m
en

ts
/o

bj
ec

t

50% full - 40G
50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

gm
en

ts
/O

bj
ec

t

90% full - 40G
90% full - 400G
97.5% full - 40G
97.5% full - 400G

Figure 7: Fragmentation for 40GB and 400GB
volumes. Other than the 50% full file system run,
volume size has a negligible impact on
fragmentation.

 11

For the synthetic workload presented above,
filesystem based storage works well for objects larger
than 256KB. A better database blob implementation
would change this. At a minimum, the database
should report fragmentation. An in-place
defragmentation utility would be helpful. To support
incremental object modification rather than the full
rewrite considered here, a more flexible B-Tree based
blob storage algorithm that optimizes insertion and
deletion of arbitrary data ranges within objects would
be advantageous.

7. Conclusions
The results presented here predict the performance of
a class of storage workloads, and reveal a number of
previously unknown factors in the importance of
storage fragmentation. They describe a simple
methodology that can measure the performance of
other applications that perform a limited number of
storage create, read, update, write, and delete
operations.

The study indicates that if objects are larger than
one megabyte on average, the file system has a clear
advantage. If the objects are under 256 kilobytes, the
database has a clear advantage. Inside this range, it
depends on how write intensive the workload is, and
the storage age of a typical replica in the system.

Instead of providing measurements in wall clock
time, we use storage age, which makes it easy to
apply results from synthetic workloads to real
deployments.

We are amazed that so little information
regarding the performance of fragmented storage was
available. Future studies should explore how
fragmentation changes under load. We did not
investigate the behavior of NTFS or SQL Server
when multiple writes to multiple objects are
interleaved. This may happen if objects are slowly
appended to over long periods of time or in
multithreaded systems that simultaneously create
many objects. We expect that fragmentation gets
worse due to the competition, but how much worse?

8. Acknowledgements
We thank Eric Brewer for the idea behind our
fragmentation analysis tool, helping us write this
article and reviewing several earlier drafts. We also
thank Surendra Verma, Michael Zwilling and the
SQL Server and NTFS development teams for
answering numerous questions throughout the study.

9. References
[McKusick] M. K. McKusick, W. N. Joy, S. J.

Leffler, Robert S. Fabry. “A Fast File System for
UNIX.” Computer Systems, Vol 2 #3 pages
181-197, 1984.

[Smith] K. Smith, M. Seltzer. “A Comparison of
FFS Disk Allocation Policies.” USENIX Annual
Technical Conference, 1996.

[DeWitt] D. DeWitt, M. Carey, J. Richardson, E.
Shekita. “Object and File Management in the
EXODUS Extensible Database System.” VLDB,
Japan, August 1986

[Ghemawat] S. Ghemawat, H. Goblioff, and S.
Leung. “The Google File System.” SOSP,
October 19-21, 2003.

[Rosenblum] M. Rosenblum, J. K. Ousterhout. “The
Design and Implementation of a Log-Structured
File System.” ACM TOCS, V. 10.1, pages 26-52,
1992.

[NetBench] “NetBench.” Lionbridge Technologies,
2002.
http://www.veritest.com/benchmarks/netbench/

[NTFS] Microsoft NTFS Development Team.
Personal communication. August, 2005.

[SQL] Microsoft SQL Server Development Team.
Personal communication. August, 2005

[SPC] SPC Benchmark-2 (SPC-2) Official
Specification, Version 1.0. Storage Performance
Council, 2005.
http://www.storageperformance.org/specs/spc2_v
1.0.pdf

[TPC] Transaction Processing Performance Council.
http://www.tpc.org

[McCoy] K. McCoy. VMS File System Internals.
Digital Press, 1990.

[Goldstein] A. Goldstein. “The Design and
Implementation of a Distributed File System.”
Digital Technical Journal, Number 5, September
1987.

[Hitz] D. Hitz, J. Lau and M. Malcom. “File System
Design for an NFS File Server Appliance.”
NetApp Technical Report #3002, March, 1995,
http://www.netapp.com/library/tr/3002.pdf

[Seltzer] M. Seltzer, D. Krinsky, K. Smith, X. Zhang.
“The Case for Application-Specific
Benchmarking.” HotOS, page 102, 1999.

