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Abstract 
Application designers must decide whether to store 
large objects (BLOBs) in a filesystem or in a 
database.  Generally, this decision is based on factors 
such as application simplicity or manageability.  
Often, system performance affects these factors. 

Folklore tells us that databases efficiently handle 
large numbers of small objects, while filesystems are 
more efficient for large objects.  Where is the 
break-even point?  When is accessing a BLOB stored 
as a file cheaper than accessing a BLOB stored as a 
database record? 

The simple answer is: BLOBs smaller than 
256KB are more efficiently handled by a database, 
while a filesystem is more efficient for those greater 
than 1MB.  Of course, this will vary between 
different databases and filesystems. 

By measuring the performance of a storage 
server that mimics common workloads we found that 
the break-even point depends on many factors.  
However, our experiments suggest that storage age, 
the ratio of bytes in deleted objects to bytes in live 
objects, is dominant.  As storage age increases, 
fragmentation tends to increase.  The filesystem we 
study has better fragmentation control than the 
database we used, suggesting the database system 
would benefit from incorporating ideas from 
filesystem design.  Conversely, filesystem 
performance may be improved by using database 
techniques to handle many small files.   

Surprisingly, for these studies, when average 
object size is held constant, the distribution of object 
sizes did not significantly affect performance.  We 
also found that, in addition to low percentage free 
space, a low ratio of free space to average object size 
leads to fragmentation and performance degradation. 

1. Introduction 
Application data objects are getting larger as digital 
media becomes ubiquitous.  Application designers 
have the choice of storing large objects as files in the 
file system, as BLOBs (binary large objects) in a 
database, or as a combination of both. Only folklore 
is available regarding the tradeoffs – often the design 

decision is based on which technology the designer 
knows best.  Most designers will tell you that a 
database is probably best for small binary objects and 
that that files are best for large objects. But, what is 
the break-even point?  What are the tradeoffs? 

This article characterizes the performance of an 
abstracted typical web application that deals with 
relatively large objects. Two versions of the system 
are compared; one uses a relational database to store 
large objects, while the other version stores the 
objects as files in the filesystem.  We measure how 
the performance changes over time as the storage 
becomes fragmented. The article concludes by 
describing and quantifying the factors that a designer 
should consider when picking a storage system.  It 
also suggests filesystem and database improvements 
for large object support. 

One surprising (to us at least) conclusion of our 
work is that storage fragmentation is the main 
determinant of the break-even point in the tradeoff.  
Therefore, much of our work and much of this article 
focuses on storage fragmentation issues.  In essence, 
file systems seem to have better fragmentation 
handling than databases and this drives the 
break-even point down from about 1MB to about 
256KB.  

2. Background 
2.1. Fragmentation  
Filesystems have long used sophisticated allocation 
strategies to avoid fragmentation while laying out 
objects on disk.  For example, OS/360’s filesystem 
was extent based and clustered extents to improve 
access time.  The VMS filesystem included similar 
optimizations and provided a file attribute that 
allowed users to request a (best effort) contiguous 
layout [McCoy, Goldstein]. Berkeley FFS 
[McKusick] was an early UNIX filesystem that took 
sequential access, seek performance and other 
hardware characteristics into account when laying 
data out on disk.  Subsequent filesystems were built 
with similar goals in mind.  
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The file system used in these experiments, 
NTFS, uses a ‘banded’ allocation strategy for 
metadata, but not for file contents [NTFS]. NTFS 
allocates space for file stream data from a run-based 
lookup cache. Runs of contiguous free clusters are 
ordered in decreasing size and volume offset. NTFS 
attempts to satisfy a new space allocation from the 
outer band. If that fails, large extents within the free 
space cache are used. If that fails, the file is 
fragmented. Additionally, when a file is deleted, the 
allocated space cannot be reused immediately; the 
NTFS transactional log entry must be committed 
before the freed space can be reallocated. The net 
behavior is that file stream data tends to be allocated 
contiguously within a file.  

In contrast, database systems began to support 
large objects more recently [DeWitt].  They 
historically focused on small (100 byte) records and 
on clustering tuples within the same table.  Clustered 
indexes let users control the order in which tuples are 
stored, allowing common queries to be serviced with 
a sequential scan over the data. 

Filesystems and databases take different 
approaches to modifying an existing object.  
Filesystems are optimized for appending or 
truncating a file. In-place file updates are efficient, 
but when data are inserted or deleted in the middle of 
a file, all contents after the modification must be 
completely re-written. Some databases completely 
rewrite modified blobs; this rewrite is transparent to 
the application. Others, such as SQL Server, support 
efficient insertion or deletion within an object if the 
change is aligned on database pages. (How likely that 
may be depends on how well the database page aligns 
to the application change to the object.) Still others, 
such as Exodus [DeWitt], use B-Tree based storage 
of large objects, and allow efficient insertion and 
deletion of arbitrary size data at arbitrary offset 
within an object.  

Of course the application can do its own 
fragmentation.  Some applications simply store each 
object directly in the database as a single blob, or as a 
single file in a file system.  However, in order to 
efficiently service user requests, other applications 
use more complex allocation strategies.  For instance, 
objects may be partitioned into many smaller chunks 
stored as blobs.  Video streams are often “chunked” 
in this way. Alternately, smaller objects may be 
aggregated into a single blob or file – for example 
TAR, ZIP, or CAB files.   

2.2. Safe writes 
This study only considers applications that overwrite 
entire objects.  Such applications do not force the 
storage system to understand their data’s structure, 
trading opportunities for optimization for simplicity 

and robustness.  Even this simple update policy is not 
entirely straightforward.  This section will describe 
mechanisms that safely update entire objects at once. 

Most filesystems protect internal metadata 
structures (such as directories and filenames) from 
corruption due to dirty shutdowns (such as system 
crashes and power outages). However, there is no 
such guarantee for file contents. In particular, file 
systems and the operating system below them reorder 
write requests to improve performance. Only some of 
those requests may complete at dirty shutdown. 

As a result, many desktop applications use a 
technique called a “safe write” to achieve the 
property that, after a dirty shutdown, the file contents 
are either new or old but not a mix of old and new. 
While safe-writes ensure that an old file is robustly 
replaced, they also force a complete copy of the file 
to disk even if most of the file contents are 
unchanged. 

To perform a safe write, a new version of the file 
is created with a temporary name.  Next, the new data 
is written to the temporary file and those writes are 
flushed to disk. Finally, the new file is renamed to the 
permanent file name, thereby deleting the file with 
the older data.  Under UNIX, rename() is guaranteed 
to atomically overwrite the old version of the file. 
Under Windows, the ReplaceFile() call is used to 
atomically replace one file with another.  

In contrast, databases typically offer 
transactional updates, which allow applications to 
group many changes into a single atomic unit called a 
transaction. Complete transactions are applied to the 
database atomically regardless of system dirty 
shutdown, database crash, or application crashes. 
Therefore, applications may safely update their data 
in whatever manner is most convenient.  Depending 
on the database implementation and the nature of the 
update, it can be more efficient to update a small 
portion of the blob instead of overwriting it 
completely. 

The database guarantees transactional semantics 
by logging both metadata and data changes 
throughout a transaction. Once the appropriate log 
records have been flushed to disk, the associated 
changes to the database are guaranteed to complete. 
The log is written sequentially, and subsequent 
database updates can be reordered to minimize seeks.  
Log entries for each change must be written; but the 
actual database writes can be coalesced – only the 
last write to each page need actually occur.  

Logging all data and metadata guarantees 
correctness, but at the cost of writing all data twice. 
With large data objects, this can put the database at a 
noticeable performance disadvantage. The sequential 
write to the database log is roughly equivalent to the 
sequential write to a file. The additional write to the 
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database pages will form an additional sequential 
write if all database pages are contiguous or many 
seek-intensive writes if the pages are not located near 
each other. Large objects also fill the log causing the 
need for more frequent log truncation and 
checkpoint, which reduces opportunities to reorder 
and combine page modifications. 

2.3. Data centric web services 
To provide an equitable comparison between the 
filesystem and the database, we burdened the 
application with detecting and repairing corrupt or 
torn objects by using SQL Server’s bulk-logging 
mode. Bulk-logging mode provides transactional 
durability for data in tables, but, like a filesystem, 
does not guarantee that large object data will be 
consistent after a dirty shutdown. 

Our database and file system based storage 
systems both provide transactional updates to object 
metadata. Both write the large object data once and 
only once. Neither guarantees that large object data 
are updated correctly across system or application 
outages.  

While handling corrupt objects sounds like a 
significant burden, the necessary detection and repair 
mechanisms are often built into large scale web 
services which use replication. Such services are 
typically supported by very large, heterogeneous 
networks built from low cost, unreliable components. 
System crashes and hardware faults that silently 
corrupt data are not uncommon. Applications 
deployed on such systems must regularly check for 
and recover from corrupted application data.  When 
corruption is detected, intact versions of the affected 
data can be copied from another replica.   

After a crash, a replica could manually check any 
objects that may have been partially updated when 
the crash occurred, and obtain good copies from other 
replicas when necessary.  This study does not 
consider the overhead that recovery mechanisms and 
detection of silent data corruption would entail.  This 
allows us to provide a meaningful comparison of the 
performance of the two systems without tying the 
results to a particular recovery or data scrubbing 
implementation. 

3. Prior work 
While filesystem fragmentation has been studied 
within numerous contexts in the past, we were 
surprised to find relatively few systematic 
investigations.  There is common folklore passed by 
word of mouth between application and system 
designers. A number of performance benchmarks are 
impacted by fragmentation, but these do not measure 
fragmentation per se. There are algorithms used for 

space allocation by database and filesystem 
designers.  

We found very little hard data on the actual 
performance of fragmented storage. Moreover, recent 
changes in application workloads, hardware models, 
and the increasing popularity of database systems for 
the storage of large objects present workloads not 
covered by existing studies. 

3.1. Folklore 
There is a wealth of anecdotal experience with 
applications that use large objects. The prevailing 
wisdom is that databases are better for small objects 
while filesystems are better for large objects. The 
boundary between small and large is usually a bit 
fuzzy.  The usual reasoning is:   

• Database queries are faster than file opens. The 
overhead of opening a file handle dominates 
performance when dealing with small objects.  

• Reading or writing large files is faster than 
accessing large database blobs. Filesystems are 
optimized for streaming large objects.  

• Database client interfaces aren’t good with large 
objects. Remote database client interfaces such 
as MDAC have historically been optimized for 
short low latency requests returning small 
amounts of data.  

• File opens are CPU expensive, but can be easily 
amortized over cost of streaming large objects.  

None of the above points address the question of 
application complexity. Applications that store large 
objects in the filesystem encounter the question of 
how to keep the database object metadata and the 
filesystem object data synchronized. A common 
problem is the garbage collection of files that have 
been “deleted” in the database but not the filesystem.  

Also missing are operational issues such as 
replication, backup, disaster recovery, and 
fragmentation.  

3.2. Standard Benchmarks 
While many filesystem benchmarking tools exist, 
most consider the performance of clean filesystems, 
and do not evaluate long-term performance as the 
storage system ages and fragments. Using simple 
clean initial conditions eliminates potential variation 
in results caused by different initial conditions and 
reduces the need for settling time to allow the system 
to reach equilibrium. 

Several long-term filesystem performance 
studies have been performed based upon two general 
approaches [Seltzer].  The first approach, trace based 
load generation, uses data gathered from production 
systems over a long period.  The second approach,  
and the one we adopt for our study, is vector based 
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load generation that models application behavior as a 
list of primitives (the ‘vector’), and randomly applies 
each primitive to the filesystem with the frequency a 
real application would apply the primitive to the 
system.  

NetBench [NetBench] is the most common 
Windows file server benchmark. It measures the 
performance of a file server accessed by multiple 
clients.  NetBench generates workloads typical of 
office applications.  

SPC-2 benchmarks storage system applications 
that read and write large files in place, execute large 
read-only database queries, or provide read-only 
on-demand access to video files [SPC]. 

The Transaction Processing Performance 
Council [TPC] have defined several benchmark 
suites to characterize online transaction processing 
workloads and also decision support workloads.  
However, these benchmarks do not capture the task 
of managing large objects or multimedia databases.  

None of these benchmarks consider file 
fragmentation.  

3.3. Data layout mechanisms 
Different systems take surprisingly different 
approaches to the fragmentation problem.   

The creators of FFS observed that for typical 
workloads of the time, fragmentation avoiding 
allocation algorithms kept fragmentation under 
control as long as volumes were kept under 90% full 
[Smith].  UNIX variants still reserve a certain amount 
of free space on the drive, both for disaster recovery 
and in order to prevent excess fragmentation.  

NTFS disk occupancy on deployed Windows 
systems varies widely. System administrators’ target 
disk occupancy may be as low as 60% or over 90% 
[NTFS]. On NT 4.0, the in-box defragmentation 
utility was known to have difficulties running when 
the occupancy was greater than 75%. This limitation 
was addressed in subsequent releases. By Windows 
2003 SP1, the utility included support for 
defragmentation of system files and attempted partial 
file defragmentation when full defragmentation is not 
possible.   

LFS [Rosenblum], a log based filesystem, 
optimizes for write performance by organizing data 
on disk according to the chronological order of the 
write requests.  This allows it to service write 
requests sequentially, but causes severe 
fragmentation when files are updated randomly.  A 
cleaner that simultaneously defragments the disk and 
reclaims deleted file space can partially address this 
problem.  

Network Appliance’s WAFL (“Write Anywhere 
File Layout”) [Hitz] is able to switch between 
conventional and write-optimized file layouts 

depending on workload conditions.  WAFL also 
leverages NVRAM caching for efficiency and 
provides access to snapshots of older versions of the 
filesystem contents. Rather than a direct 
copy-on-write of the data, WAFL metadata remaps 
the file blocks. A defragmentation utility is 
supported, but is said not to be needed until disk 
occupancy exceeds 90+%.   

GFS [Ghemawat], a filesystem designed to deal 
with multi-gigabyte files on 100+ terabyte volumes, 
partially addresses the data layout problem by using 
64MB blocks called ‘chunks’.  GFS also provides a 
safe record append operation that allows many 
clients to simultaneously append to the same file, 
reducing the number of files (and opportunities for 
fragmentation) exposed to the underlying filesystem.  
GFS records may not span chunks, which can result 
in internal fragmentation.  If the application attempts 
to append a record that will not fit into the end of the 
current chunk, that chunk is zero padded, and the new 
record is allocated at the beginning of a new chunk.  
Records are constrained to be less than ¼ the chunk 
size to prevent excessive internal fragmentation.  
However, GFS does not explicitly attempt to address 
fragmentation introduced by the underlying file 
system, or to reduce internal fragmentation after 
records are allocated. 

4. Comparing Files and 
BLOBs 
This study is primarily concerned with the 
deployment and performance of data-intensive web 
services.  Therefore, we opted for a simple vector 
based workload typical of existing web applications, 
such as Hotmail, flickr, and MSN spaces. These sites 
allow sharing of objects that range from small text 
mail messages (100s of bytes) to photographs (100s 
of KB to a few MB) to video (100s of MBs.)   

The workload also corresponds to collaboration 
applications such as SharePoint Team Services. 
These applications enable rich document sharing 
semantics, rather than simple file shares. Examples of 
the extra semantics include document versioning, 
content indexing and search, and rich role-based 
authorization.  

Many of these sites and applications use a 
database to hold the application specific metadata 
including that which describes the large objects. 
Large objects may be stored in the database, in the 
filesystem, or distributed between the database and 
the filesystem. We consider only the first two options 
here. We also did not include any shredding or 
chunking of the objects.  
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4.1. Test System Configuration 
All the tests were performed on the system described 
in Table 1:  All test code was written using C# in 
Visual Studio 2005 Beta 2.  All binaries used to 
generate tests were compiled to x86 code with 
debugging disabled.  

 
Table 1: Configurations of the test systems 
Tyan S2882 K8S Motherboard,  
1.8 Ghz Opteron 244, 2 GB RAM (ECC) 
SuperMicro “Marvell”  MV8 SATA controller 
4 Seagate 400GB ST3400832AS 7200 rpm SATA  
Windows Server 2003 R2 Beta (32 bit mode). 
SQL Server 2005 Beta 2 (32 bit mode).  

4.2. File based storage 
For the filesystem based storage tests, we stored 
metadata such as object names and replica locations 
in SQL server tables. Each application object was 
stored in its own file.  The files were placed in a 
single directory on an otherwise empty NTFS 
volume.  SQL was given a dedicated log and data 
drive, and the NTFS volume was accessed via an 
SMB share.   

We considered a purely file-based approach, but 
such a system would need to implement complex 
recovery routines, would lack support for consistent 
metadata, and would not provide functionality 
comparable to the systems mentioned above. 

This partitioning of tasks between a database and 
filesystem is fairly flexible, and allows a number of 
replication and load balancing schemes. For example, 
a single clustered SQL server could be associated 
with several file servers. Alternately, the SQL server 
could be co-located with the associated files and then 
the combination clustered. The database isolates the 
client from changes in the architecture – changing the 
pointer in the database changes the path returned to 
the client.   

We chose to measure the configuration with the 
database co-located with the associated files. This 
single machine configuration kept our experiments 
simple. We avoided building assumptions and 
dependencies on the network layout into the study. 
However, we structured all code to use the same 
interfaces and services as a networked configuration. 

4.3. Database storage 
The database storage tests were designed to be as 
similar to the filesystem tests as possible.  As 
explained previously, we used bulk-logging mode. 
We also used out-of-row storage for the application 
data so that the blobs did not decluster the metadata. 

Although the blob data and table information are 
stored in the same file group, out-of-row storage 

places blob data on pages that are distinct from the 
pages that store the other table fields.  This allows the 
table data to be kept in cache even if the blob data 
does not fit in main memory.  Analogous table 
schemas and indices were used and only minimal 
changes were made to the software that performed 
the tests.  

4.4. Performance tuning 
We set out to fairly evaluate the out-of-the-box 
performance of the two storage systems.  Therefore, 
we did no performance tuning except in cases where 
the default settings introduced gross discrepancies in 
the functionality that the two systems provided. 

We found that NTFS’s file allocation routines 
behave differently when the number of bytes per file 
write (append) is varied.  We did not preset the file 
size; as such NTFS attempts to allocate space as 
needed.  When NTFS detects large, sequential 
appends to the end of a file its allocation routines 
aggressively attempt to allocate contiguous space.  
Therefore, as the disk gets full, smaller writes are 
likely to lead to more fragmentation.  While NTFS 
supports setting the valid data length of a file, this 
operation incurs the write overhead of zero filling the 
file, so it is not of interest here [NTFS]. Because the 
behavior of the allocation routines depends on the 
size of the write requests, we use a 64K write buffer 
for all database and file system runs.  The files were 
accessed (read and written) sequentially.  We made 
no attempt to pass hints regarding final object sizes to 
NTFS or SQL Server. 

4.5. Workload generation 
Real world workloads have many properties that are 
difficult to model without application specific 
information such as object size distributions, 
workload characteristics, or application traces.  

However, the applications of interest are 
extremely simple from a storage replica’s point of 
view. Over time, a series of object allocation, 
deletion, and safe-write updates are processed with 
interleaved random read requests. 

For simplicity, we assumed that all objects are 
equally likely to be written and/or read. We also 
assumed that there is no correlation between objects. 
This lets us measure the performance of write-only 
and read-only workloads.   

We measured constant size objects rather than 
objects with more complicated size distributions. We 
expected that size distribution would be an important 
factor in our experiments. As shown later, we found 
that size distribution had no obvious effect on the 
behavior. Given that, we chose the very simple 
constant size distribution. 
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4.6. Storage age 
We want to characterize the behavior of storage 
systems over time. Past fragmentation studies 
measure age in elapsed time such as ‘days’ or 
‘months.’ We propose a new metric, storage age, 
which is the ratio of bytes in objects that once existed 
on a volume to the number of bytes in use on the 
volume.  This definition of storage age assumes that 
the amount of free space on a volume is relatively 
constant over time. 

For a safe-write system that is the ratio of object 
insert-update-delete bytes over the number of total 
object bytes.  When evaluating a single node system 
using trace-based data, storage age has a simple 
intuitive interpretation.   

A synthetic workload effectively speeds up 
application elapsed time. Our workload is disk arm 
limited; we did not include extra think time or 
processor overheads. The speed up is application 
specific and depends on the actual application 
read:write ratio and heat.  

We considered reporting time in “hours under 
load”. Doing so has the undesirable property of 
rewarding slow storage systems by allowing them to 
perform less work during the test.   

In our experimental setup, storage age is 
equivalent to “safe writes per object.” This metric is 
independent of the actual applied read:write load or 
the number of requests over time. Storage ages can 
be compared across hardware configurations and 
applications.  Finally, it is easy to convert storage age 
to elapsed wall clock time after the rate of data churn, 
or overwrite rate, of a specific system is determined.   

5. Results 
Our results use throughput as the primary indicator of 
performance. We started with the typical 
out-of-the-box throughput study. We then looked at 
the longer term changes caused by fragmentation 
with a focus on 256K to 1M object sizes where 
filesystem and database have comparable 
performance.  Lastly, we discuss the effects of 
volume size and object size on our measurements. 

5.1. Database or Filesystem:  Throughput 
out-of-the-box 
We begin by establishing when a database is clearly 
the right answer and when the filesystem is clearly 
the right answer.   

Following the lead of existing benchmarks, we 
evaluated the read performance of the two systems on 
a clean data store. Figure 1 demonstrates the truth of 
the folklore: objects up to about 1MB are best stored 
as database blobs.  Performance of SQL reads for 
objects of 256KB was 2x better than NTFS; but the 
systems had parity at 1MB objects, and beyond that 
NTFS was the best choice.   

The write throughput of SQL Server exceeded 
that of NTFS during bulk load. With 512KB objects, 
database write throughput was 17.7MB/s, while the 
filesystem only achieved 10.1MB/s.  

5.2 Database or Filesystem over time 
Next, we evaluated the performance of the two 
systems on large objects over time. If fragmentation 
is important, we expect to see noticeable performance 
degradation.   

Read Throughput After Bulk load
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Figure 1: Read throughput immediately after bulk 
loading the data. Databases are fastest on small 
objects. As object size increases, NTFS 
throughput improves faster than SQL Server
throughput. 
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Our first discovery was that SQL Server does not 
provide facilities to report fragmentation of large 
object data or to defragment such data. There are 
measurements and mechanisms for index 
defragmentation. The recommended way to 
defragment a large blob table is to create a new table 
in large new file group, copy the old records to the 
new table and drop the old table [SQL].  

To measure fragmentation, we tagged each of 
our objects with a unique identifier and a sequence 
number at 1KB intervals.  We also implemented a 
utility that looks for the locations of these markers on 
a raw device in a way that was robust to page 
headers, and other artifacts of the storage system.  In 
other words, the utility measures fragmentation in the 
same way regardless of whether the objects are stored 
in the filesystem or the database.  We ran our utility 
against an NTFS volume to check that it reported 
figures that agreed with the NTFS fragmentation 
report.  

The degradation in read performance for 256K, 
512K, and 1MB blobs is shown in Figure 2. Each 
storage age (2 and 4) corresponds to the time 
necessary for the number of updates, inserts, or 
deletes to be N times the number of objects in our 
store since the bulk load (storage age 0) shown in 

Figure 1.  Fragmentation under NTFS begins to level 
off over time. SQL Server’s fragmentation increases 
almost linearly over time and does not seem to be 
approaching any asymptote.  This is dramatically the 
case with very large (10MB) objects as seen in 
Figure 3. 

We also ran our load generator against an 
artificially and pathologically fragmented NTFS 
volume. We found that fragmentation slowly 
decreased over time. The best-effort attempt to 
allocate contiguous space actually defragments such 
volumes. That experiment also suggests that NTFS is 
indeed approaching an asymptote in Figure 3. 

The degradation in write performance is shown 
in Figure 4.  In both systems, the write throughput 
during bulk load is much better than read throughput 
immediately afterward.  This is not surprising, as the 
storage systems can simply append each new file to 
the end of allocated storage, avoiding seeks during 
bulk load.  On the other hand, the read requests are 
randomized, and must incur the overhead of at least 
one seek.  After bulk load, the write performance of 
SQL Server degrades quickly, while the NTFS write 
performance numbers are slightly better than its read 
performance.   
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Figure 2: Fragmentation causes read performance 
to degrade over time. File system is less affected 
by this than SQL Server.  Over time NTFS 
outperforms SQL Server when objects are larger 
than 256KB.  

Long Term Fragmentation With 10 MB Objects
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Figure 3:  For large objects, NTFS deals with 
fragmentation more effectively than SQL server. 

 

512K Write Throughput Over Time
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Figure 4: Although SQL Server quickly fills a 
volume with data, performance suffers when 
existing objects are replaced. 
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Note that these write performance numbers are 
not directly comparable to the read performance 
numbers in Figures 1 and 2. Read performance is 
measured after fragmentation, while write 
performance is the average performance during 
fragmentation.  To be clear, the “storage age four” 
write performance is the average write throughput 
between the read measurements labeled “bulk load” 
and “storage age two.”  Similarly, the reported write 
performance for storage age four reflects average 
write performance between storage ages two and 
four.  

The results so far indicate that as storage age 
increases, 256KB, not 1MB is the cross over point 
where filesystems out perform databases. Objects up 
to about 256KB objects are best kept in the database; 
larger objects should be in the filesystem.  

To verify this, we attempted to run both systems 
until the performance reached steady state.  

Figure 5 indicates that fragmentation converges 
to four fragments per file, or one fragment per 64KB, 
in both the filesystem and database.  This is 
interesting because our tests use 64KB write requests, 
again suggesting that the impact of write block size 
upon fragmentation warrants further study.  From this 
data, we conclude that SQL Server indeed 
outperforms NTFS on objects under 256KB, as 
indicated by Figures 2 and 4. 

5.3. Fragmentation effects of object size, 
volume capacity, and write request size 
Distributions of object size vary greatly from 
application to application. Similarly, applications are 
deployed on storage volumes of widely varying size 
particularly as disk capacity continues to increase 
dramatically.   

This series of tests generated objects using a 
constant size distribution and compared performance 
when the sizes were uniformly distributed.  Both sets 
of objects had a mean size of 10MB.  

Intuition suggested that constant size objects 
should not lead to fragmentation. Deleting an initially 
contiguous object leaves a region of contiguous free 
space exactly the right size for any new object. As 
shown in Figure 6, our intuition was wrong.  

As long as the average object size is held 
constant there is little difference between uniformly 
distributed and constant sized objects. This suggests 
that experiments that use extremely simple size 
distributions can be representative of many different 
workloads.  This contradicts the approach taken by 
prior storage benchmarks that make use of complex, 
accurate modeling of application workloads.  This 
may well be due to the simple all-or-nothing access 
pattern that avoids object extension and truncation, 
and our assumption that application code has not 
been carefully tuned to match the underlying storage 
system.  

The time it takes to run the experiments is 
proportional to the volume’s capacity.  When the 
entire disk capacity (400GB) is used, some 
experiments take a week to complete.  Using a 
smaller (although perhaps unrealistic) volume size, 
allows more experiments; but how trustworthy are 
the results?  

As shown in Figure 7, we found that volume size 
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Figure 5: For small objects, the systems have 
similar fragmentation behavior. 
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Filesystem Fragmentation: Blob Distributions
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Figure 6: Fragmentation for large (10MB) blobs –
increases slowly for NTFS but rapidly for SQL. 
However objects of a constant size show no better 
fragmentation performance than objects of sizes 
chosen uniformly at random with the same 
average size.  



 10 

does not really affect performance for larger volume 
sizes.  However, on smaller volumes, we found that 
as the ratio of free space to object size decreases, 
performance degrades.   

We did not characterize the exact point where 
this becomes a significant issue. However, our results 
suggest that the effect is negligible when there is 10% 
free space on a 40GB volume storing 10MB objects, 
which implies a pool of 400 free objects.  With a 
4GB volume with a pool of 40 free objects, 
performance degraded rapidly. 

6. Implications for system 
designers  
This article has already mentioned several issues that 
should be considered during application design. 
Designers should provision at least 10% excess 
storage capacity to allow each volume to maintain 
free space for many (~400 in our experiment) free 
objects.  If the volume is large enough, the 
percentage free space becomes a limiting factor.  For 
NTFS, we can see this in Figure 7, where the 
performance of a 97.5% full 400GB volume is worse 
than the performance of a 90% full 40GB volume.  
(A 99% full 400GB volume would have the same 
number of free objects as the 40GB volume.) 

While we did not carefully characterize the 
impact of application allocation routines upon the 
allocation strategy used by the underlying storage 
system, we did observe significant differences in 
behavior as we varied the write buffer size.  
Experimentation with different buffer sizes, or other 
techniques that avoid incremental allocation of 
storage may significantly improve long run storage 
performance. This also suggests that file system 
designers should re-evaluate what is a “large” request 
and be more aggressive about coalescing larger 
sequential requests.  

Simple procedures such as manipulating write 
size, increasing the amount of free space, and 
performing periodic defragmentation can improve the 
performance of a system.  When dealing with an 
existing system, tuning these parameters may be 
preferable to switching from database to file system 
storage, or vice versa.   

When designing a new system, it is important to 
consider the behavior of a system over time instead of 
looking only the performance of a clean system.  If 
fragmentation is a significant concern, the system 
must be defragmented regularly. Defragmentation of 
a filesystem implies significant read/write impacts or 
application logic to garbage collect and reinstantiate a 
volume. Defragmentation of a database requires 
explicit application logic to copy existing blobs into a 
new table.  To avoid causing still more 
fragmentation, that logic must be run only when 
ample free space is available.  A good database 
defragmentation utility (or at least good automation 
of the above logic including space estimation 
required) would clearly help system administrators.  

Using storage age to measure time aids in the 
comparison of different designs.  In this study we use 
“safe-writes per object” as a measurement of storage 
age.  In other applications, appends per object or 
some combination of create/append/deletes may be 
more appropriate.  

Database Fragmentation: Different Volumes
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Filesystem Fragmentation: Different Volumes
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Figure 7: Fragmentation for 40GB and 400GB 
volumes.  Other than the 50% full file system run, 
volume size has a negligible impact on 
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For the synthetic workload presented above, 
filesystem based storage works well for objects larger 
than 256KB. A better database blob implementation 
would change this. At a minimum, the database 
should report fragmentation. An in-place 
defragmentation utility would be helpful. To support 
incremental object modification rather than the full 
rewrite considered here, a more flexible B-Tree based 
blob storage algorithm that optimizes insertion and 
deletion of arbitrary data ranges within objects would 
be advantageous.  

7. Conclusions 
The results presented here predict the performance of 
a class of storage workloads, and reveal a number of 
previously unknown factors in the importance of 
storage fragmentation.  They describe a simple 
methodology that can measure the performance of 
other applications that perform a limited number of 
storage create, read, update, write, and delete 
operations.   

The study indicates that if objects are larger than 
one megabyte on average, the file system has a clear 
advantage.  If the objects are under 256 kilobytes, the 
database has a clear advantage.  Inside this range, it 
depends on how write intensive the workload is, and 
the storage age of a typical replica in the system. 

Instead of providing measurements in wall clock 
time, we use storage age, which makes it easy to 
apply results from synthetic workloads to real 
deployments. 

We are amazed that so little information 
regarding the performance of fragmented storage was 
available. Future studies should explore how 
fragmentation changes under load. We did not 
investigate the behavior of NTFS or SQL Server 
when multiple writes to multiple objects are 
interleaved. This may happen if objects are slowly 
appended to over long periods of time or in 
multithreaded systems that simultaneously create 
many objects. We expect that fragmentation gets 
worse due to the competition, but how much worse?  

8. Acknowledgements 
We thank Eric Brewer for the idea behind our 
fragmentation analysis tool, helping us write this 
article and reviewing several earlier drafts.  We also 
thank Surendra Verma, Michael Zwilling and the 
SQL Server and NTFS development teams for 
answering numerous questions throughout the study. 

9. References 
[McKusick] M. K. McKusick, W. N. Joy, S. J. 

Leffler, Robert S. Fabry.  “A Fast File System for 
UNIX.”  Computer Systems, Vol 2 #3 pages 
181-197, 1984. 

[Smith] K. Smith, M. Seltzer.  “A Comparison of 
FFS Disk Allocation Policies.”  USENIX Annual 
Technical Conference, 1996. 

[DeWitt] D. DeWitt, M. Carey, J. Richardson, E. 
Shekita.  “Object and File Management in the 
EXODUS Extensible Database System.”  VLDB, 
Japan, August 1986 

[Ghemawat] S. Ghemawat, H. Goblioff, and S. 
Leung.  “The Google File System.”  SOSP, 
October 19-21, 2003.   

[Rosenblum] M. Rosenblum, J. K. Ousterhout.  “The 
Design and Implementation of a Log-Structured 
File System.”  ACM TOCS, V. 10.1, pages 26-52, 
1992. 

[NetBench] “NetBench.” Lionbridge Technologies, 
2002. 
http://www.veritest.com/benchmarks/netbench/ 

[NTFS] Microsoft NTFS Development Team. 
Personal communication.  August, 2005. 

[SQL] Microsoft SQL Server Development Team. 
Personal communication. August, 2005 

[SPC] SPC Benchmark-2 (SPC-2) Official 
Specification, Version 1.0.  Storage Performance 
Council, 2005. 
http://www.storageperformance.org/specs/spc2_v
1.0.pdf  

[TPC] Transaction Processing Performance Council. 
http://www.tpc.org 

[McCoy] K. McCoy.  VMS File System Internals.  
Digital Press, 1990.  

[Goldstein] A. Goldstein.  “The Design and 
Implementation of a Distributed File System.”  
Digital Technical Journal, Number 5, September 
1987. 

[Hitz] D. Hitz, J. Lau and M. Malcom.  “File System 
Design for an NFS File Server Appliance.”  
NetApp Technical Report #3002, March, 1995, 
http://www.netapp.com/library/tr/3002.pdf 

[Seltzer] M. Seltzer, D. Krinsky, K. Smith, X. Zhang.  
“The Case for Application-Specific 
Benchmarking.”  HotOS, page 102, 1999.  


