dev-notes/Database/MongoDB.md
2021-02-08 21:19:33 +01:00

408 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# MongoDB Cheat Sheet
## Terminologia & concetti base
The database is a container of **collections**. The collections are containers of **documents**.
The documents are *schema-less* that is they have a dynamic structure that can change between documents in the same colletion.
### Data Types
| Tipo | Documento | Funzione |
|-------------------|------------------------------------------------|-------------------------|
| Text | `"Text"` |
| Boolean | `true` |
| Number | `42` |
| Objectid | `"_id": {"$oid": "<id>"}` | `ObjectId("<id>")` |
| ISODate | `"key": {"$date": "YYYY-MM-DDThh:mm:ss.sssZ"}` | `ISODate("YYYY-MM-DD")` |
| Timestamp | | `Timestamp(11421532)` |
| Embedded Document | `{"a": {...}}` |
| Embedded Array | `{"b": [...]}` |
It's mandatory for each document ot have an uniwue field `_id`.
MongoDB automatically creates an `ObjectId()` if it's not provided.
### Database Usage
To create a database is sufficient to switch towards a non existing one with `use <database>` (implicit creation).
The database is not actually created until a document is inserted.
```sh
show dbs # list all databases
use <database> # use a particular database
show collections # list all collection for the current database
dbs.dropDatabase() # delete current database
```
## Collection Ussage
```sh
db.createCollection(name, {options}) # explicit collection creation
db.<collection>.insertOne({document}) # implicit collection creation
```
## CRUD Operations
### Filters
Base Syntax: `{ "outerKey.innerKey": "value" }`
Comparison: `{ key: { $operator : "value"} }`
| Operator | Math Symbol |
|----------|-------------|
| `$gt` | > |
| `$gte` | => |
| `$lt` | < |
| `$lte` | <= |
| `$eq` | == |
| `$ne` | != |
Field Exists: `{ key: {$exists: true} }`
Logical `Or`: `{ $or: [ {filter_1}, {filter_2}, ... ] }`
Membership: `{ key: { $in: [value_1, value_2, ...] } }` or `{ key: { $nin: [value_1, value_2, ...] } }`
### Create
It's possible to insert a single document with the command `insertOne()` or multiple documents with `insertMany()`.
Isertion results:
- error -> rollback
- success -> entire documents gets saved
```sh
# explicit collection creation, all options are otional
db.createCollection( <name>,
{
capped: <boolean>,
autoIndexId: <boolean>,
size: <number>,
max: <number>,
storageEngine: <document>,
validator: <document>,
validationLevel: <string>,
validationAction: <string>,
indexOptionDefaults: <document>,
viewOn: <string>,
pipeline: <pipeline>,
collation: <document>,
writeConcern: <document>
}
)
db.createCollection("name", { capped: true, size: max_bytes, max: max_docs_num } ) # creation of a capped collection
# SIZE: int - will be rounded to a multiple of 256
# implicit creation at doc insertion
db.<collection>.insertOne({ document }, options) # insert a document in a collection
db.<collection>.insertMany([ { document }, { document }, ... ], options) # insert multiple docs
db.<collection>.insert()
```
Se `insertMany()` causa un errore il processo di inserimento si arresta. Non viene eseguito il rollback dei documenti già inseriti.
### Read
```sh
db.<collection>.findOne() # find only one document
db.<collection>.find(filter) # show selected documents
db.<collection>.find(filter, {key: 1}) # show selected values form documents (1 or true => show, 0 or false => dont show, cant mix 0 and 1)
db.<collection>.find(filter, {_id: 0, key: 1}) # only _id can be set to 0 with other keys at 1
db.<collection>.find().pretty() # show documents formatted
db.<collection>.find().limit(n) # show n documents
db.<collection>.find().limit(n).skip(k) # show n documents skipping k docs
db.<collection>.find().count() # number of found docs
db.<collection>.find().sort({key1: 1, ... , key_n: -1}) # show documents sorted by specified keys in ascending (1) or descending (-1) order
# GeoJSON - https://docs.mongodb.com/manual/reference/operator/query/near/index.html
db.<collection>.find(
{
<location field>: {
$near: {
$geometry: { type: "Point", coordinates: [ <longitude> , <latitude> ] },
$maxDistance: <distance in meters>,
$minDistance: <distance in meters>
}
}
}
)
db.<collection>.find().hint( { <field>: 1 } ) # specify the index
db.<collection>.find().hint( "index-name" ) # specify the index using the index name
db.<collection>.find().hint( { $natural : 1 } ) # force the query to perform a forwards collection scan
db.<collection>.find().hint( { $natural : -1 } ) # force the query to perform a reverse collection scan
```
### Update
[Update Operators](https://docs.mongodb.com/manual/reference/operator/update/ "Update Operators Documentation")
```sh
db.<collection>.updateOne(filter, $set: {key: value}) # add or modify values
db.<collection>.updateOne(filter, $set: {key: value}, {upsert: true}) # add or modify values, if attribute doesent exists create it
db.<collection>.updateMany(filter, update)
db.<collection>.replaceOne(filter, { document }, options)
```
### Delete
```sh
db.<collection>.deleteOne(filter, options)
db.<collection>.deleteMany(filter, options)
db.<collection>.drop() # delete whole collection
db.dropDatabase() # delete entire database
```
## Mongoimport Tool
Utility to import all docs into a specified collection.
If the collection alredy exists `--drop` deletes it before reuploading it.
**WARNING**: CSV separators must be commas (`,`)
```sh
mongoimport -h <host:port> d <database> c <collection> --drop --jsonArray <souce_file>
mongoimport --host <HOST:PORT> --ssl --username <USERNAME> --password <PASSWORD> --authenticationDatabase admin --db <DATABASE> --collection <COLLECTION> --type <FILETYPE> --file <FILENAME>
# if file is CSV and first line is header
mongoimport ... --haderline
```
## Mongoexport Tool
Utility to export documents into a specified file.
```sh
mongoexport -h <host:port> d <database> c <collection> <souce_file>
mongoexport --host <host:port> --ssl --username <username> --password <PASSWORD> --authenticationDatabase admin --db <DATABASE> --collection <COLLECTION> --type <FILETYPE> --out <FILENAME>
```
## Mongodump & Mongorestore
`mongodump` exports the content of a running server into `.bson` files.
`mongorestore` Restore backups generated with `mongodump` to a running server.
## Relations
**Nested / Embedded Documents**:
- Group data locically
- Optimal for data belonging together that do not overlap
- Should avoid nesting too deep or making too long arrays (max doc size 16 mb)
```json
{
_id: Objectid()
key: "value"
key: "value"
innerDocument: {
key: "value"
key: "value"
}
}
```
**References**:
- Divide data between collections
- Optimal for related but shared data used in relations or stand-alone
- Allows to overtake nidification and size limits
NoSQL databases do not have relations and references. It's the app that has to handle them.
```json
{
key: "value"
references: ["id1", "id2"]
}
// referenced
{
_id: "id1"
key: "value"
}
```
## [Indexes](https://docs.mongodb.com/manual/indexes/ "Index Documentation")
Indexes support the efficient execution of queries in MongoDB.
Without indexes, MongoDB must perform a *collection scan* (*COLLSCAN*): scan every document in a collection, to select those documents that match the query statement.
If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect (*IXSCAN*).
Indexes are special data structures that store a small portion of the collections data set in an easy to traverse form. The index stores the value of a specific field or set of fields, ordered by the value of the field. The ordering of the index entries supports efficient equality matches and range-based query operations. In addition, MongoDB can return sorted results by using the ordering in the index.
Indexes *slow down writing operations* since the index must be updated at every writing.
![IXSCAN](https://docs.mongodb.com/manual/_images/index-for-sort.bakedsvg.svg ".find() using an index")
### [Index Types](https://docs.mongodb.com/manual/indexes/#index-types)
- **Normal**: Fields sorted by name
- **Compound**: Multiple Fields sorted by name
- **Multykey**: values of sorted arrays
- **Text**: Ordered text fragments
- **Geospatial**: ordered geodata
**Sparse** indexes only contain entries for documents that have the indexed field, even if the index field contains a null value. The index skips over any document that is missing the indexed field.
### Diagnosys and query planning
```sh
db.<collection>.find({...}).explain() # explain won't accept other functions
db.explain().<collection>.find({...}) # can accept other functions
db.explain("executionStats").<collection>.find({...}) # more info
```
### Index Creation
```sh
db.<collection>.createIndex( <key and index type specification>, <options> )
db.<collection>.createIndex( { <field>: <type>, <field>: <type>, ... } ) # normal, compound or multikey (field is array) index
db.<collection>.createIndex( { <field>: "text" } ) # text index
db.<collection>.createIndex( { <field>: 2dsphere } ) # geospatial 2dsphere index
# sparse index
db.<collection>.createIndex(
{ <field>: <type>, <field>: <type>, ... },
{ sparse: true } # sparse option
)
# custom name
db.<collection>.createIndex(
{ <key and index type specification>, },
{ name: "index-name" } # name option
)
```
### [Index Management](https://docs.mongodb.com/manual/tutorial/manage-indexes/)
```sh
# view all db indexes
db.getCollectionNames().forEach(function(collection) {
indexes = db[collection].getIndexes();
print("Indexes for " + collection + ":");
printjson(indexes);
});
db.<collection>.getIndexes() # view collenction's index
db.<collection>.dropIndexes() # drop all indexes
db.<collection>.dropIndex( { "index-name": 1 } ) # drop a specific index
```
## Database Profiling
Profiling Levels:
- `0`: no profiling
- `1`: data on operations slower than `slowms`
- `2`: data on all operations
Logs are saved in the `system.profile` *capped* collection.
```sh
db.setProgilingLevel(n) # set profiler level
db.setProfilingLevel(1, { slowms: <ms> })
db.getProfilingStatus() # check profiler satus
db.system.profile.find().limit(n).sort( {} ).pretty() # see logs
db.system.profile.find().limit(n).sort( { ts : -1 } ).pretty() # sort by decreasing timestamp
```
## Roles and permissions
**Authentication**: identifies valid users
**Authorization**: identifies what a user can do
- **userAdminAnyDatabase**: can admin every db in the istance (role must be created on admin db)
- **userAdmin**: can admin the specific db in which is created
- **readWrite**: can read and write in the specific db in which is created
- **read**: can read the specific db in which is created
```sh
# create users in the current MongoDB instance
db.createUser(
{
user: "dbAdmin",
pwd: "password",
roles:[
{
role: "userAdminAnyDatabase",
db:"admin"
}
]
},
{
user: "username",
pwd: "password",
roles:[
{
role: "role",
db: "database"
}
]
}
)
```
## Sharding
**Sharding** is a MongoDB concept through which big datasests are subdivided in smaller sets and distribuited towards multiple instances of MongoDB.
It's a technique used to improve the performances of large queries towards large quantities of data that require al lot of resources from the server.
A collection containing several documents is splitted in more smaller collections (*shards*)
Shards are implemented via cluster that are none other a group of MongoDB instances.
Shard components are:
- Shards (min 2), instances of MongoDB that contain a subset of the data
- A config server, instasnce of MongoDB which contains metadata on the cluster, that is the set of instances that have the shard data.
- A router (or `mongos`), instance of MongoDB used to redirect the user instructions from the client to the correct server.
![Shared Cluster](https://docs.mongodb.com/manual/_images/sharded-cluster-production-architecture.bakedsvg.svg "Components of a shared cluster")
### [Replica set](https://docs.mongodb.com/manual/replication/)
A **replica set** in MongoDB is a group of `mongod` processes that maintain the `same dataset`. Replica sets provide redundancy and high availability, and are the basis for all production deployments.
## Aggregations
Sequence of operations applied to a collection as a *pipeline* to get a result: `db.collection.aggregate(pipeline, options)`.
[Aggragations Stages][AggrStgs]:
- `$lookup`: Right Join
- `$match`: Where
- `$sort`: Order By
- `$project`: Select *
- ...
[AggrStgs]: https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
Example:
```sh
db.collection.aggregate([
{
$lookup: {
from: <collection to join>,
localField: <field from the input documents>,
foreignField: <field from the documents of the "from" collection>,
as: <output array field>
}
},
{ $match: { <query> } },
{ $sort: { ... } },
{ $project: { ... } },
{ ... }
])
```