dev-notes/Database/MongoDB.md
2021-01-31 11:05:37 +01:00

14 KiB
Raw Blame History

MongoDB Cheat Sheet

Terminologia & concetti base

Il database è un contenitore di collezioni (tabelle in DB relazionali). Le collezioni sono mini contenitori di documenti (record in DB relazionali).

I documenti sono schema-less ovvero hanno una struttura dinamica ed essa può cambiare tra documenti all'interno della stessa collezione.
La struttura di un documento è quella del JSON.

Tipi di dati

Tipo Documento Funzione
Text "Text"
Boolean true
Number 42
Objectid "_id": {"$oid": "<id>"} ObjectId("<id>")
ISODate "key": {"$date": "YYYY-MM-DDThh:mm:ss.sssZ"} ISODate("YYYY-MM-DD")
Timestamp Timestamp(11421532)
Embedded Document {"a": {...}}
Embedded Array {"b": [...]}

E' obbligatorio per ogni documento avere un campo _id univoco.
MongoDB di occupa di creare un ObjectId() in automatico.

Uso Database

Per creare un database è sufficiente effettuare uno switch verso un db non-esistente (creazione implicita): use [database]
il db non viene creato finchè non si inserisce un dato.

show dbs  # list all databases
use <database>  # use a particular database
show collections  # list all collection for the current database

dbs.dropDatabase()  # delete current database

Uso Collezioni

db.createCollection(name, {options})  # creazione collezione
db.<collection>.insertOne({document})  # creazione implicita collezione

Operazioni CRUD

Filters

Base Syntax: { "outerKey.innerKey": "value" } Comparison: { key: { $operator : "value"} }

Operator Math Symbol
$gt >
$gte =>
$lt <
$lte <=
$eq ==
$ne !=

Field Exists: { key: {$exists: true} } Logical Or: { $or: [ {filter_1}, {filter_2}, ... ] } Membership: { key: { $in: [value_1, value_2, ...] } } or { key: { $nin: [value_1, value_2, ...] } }

Create

È possibile inserire documenti con il comando insertOne() (un documento alla volta) o insertMany() (più documenti).

Risultati inserimento:

  • errore -> rollback
  • successo -> salvataggio intero documneto
# explicit collection creation, all options are otional
db.createCollection( <name>,
   {
        capped: <boolean>,
        autoIndexId: <boolean>,
        size: <number>,
        max: <number>,
        storageEngine: <document>,
        validator: <document>,
        validationLevel: <string>,
        validationAction: <string>,
        indexOptionDefaults: <document>,
        viewOn: <string>,
        pipeline: <pipeline>,
        collation: <document>,
        writeConcern: <document>
   }
)

db.createCollection("name", { capped: true, size: max_bytes, max: max_docs_num } )  # creation of a capped collection
# SIZE: int - will be rounded to a multiple of 256

# implicit creation at doc insertion
db.<collection>.insertOne({ document }, options)  # insert a document in a collection
db.<collection>.insertMany([ { document }, { document }, ... ], options)  # insert multiple docs
db.<collection>.insert()

Se insertMany() causa un errore il processo di inserimento si arresta. Non viene eseguito il rollback dei documenti già inseriti.

Read

db.<collection>.findOne()  # find only one document
db.<collection>.find(filter)  # show selected documents
db.<collection>.find(filter, {key: 1})  # show selected values form documents (1 or true => show, 0 or false => dont show, cant mix 0 and 1)
db.<collection>.find(filter, {_id: 0, key: 1})  # only _id can be set to 0 with other keys at 1
db.<collection>.find().pretty()  # show documents formatted
db.<collection>.find().limit(n)  # show n documents
db.<collection>.find().limit(n).skip(k)  # show n documents skipping k docs
db.<collection>.find().count()  # number of found docs
db.<collection>.find().sort({key1: 1, ... , key_n: -1})  # show documents sorted by specified keys in ascending (1) or descending (-1) order

# GeoJSON - https://docs.mongodb.com/manual/reference/operator/query/near/index.html
db.<collection>.find(
    {
        <location field>: {
            $near: {
                $geometry: { type: "Point", coordinates: [ <longitude> , <latitude> ] },
                $maxDistance: <distance in meters>,
                $minDistance: <distance in meters>
            }
        }
    }
)

db.<collection>.find().hint( { <field>: 1 } )  # specify the index
db.<collection>.find().hint( "index-name" )  # specify the index using the index name

db.<collection>.find().hint( { $natural : 1 } )  # force the query to perform a forwards collection scan
db.<collection>.find().hint( { $natural : -1 } )  # force the query to perform a reverse collection scan

Update

Update Operators

db.<collection>.updateOne(filter, $set: {key: value})  # add or modify values
db.<collection>.updateOne(filter, $set: {key: value}, {upsert: true})  # add or modify values, if attribute doesent exists create it

db.<collection>.updateMany(filter, update)

db.<collection>.replaceOne(filter, { document }, options)

Delete

db.<collection>.deleteOne(filter, options)
db.<collection>.deleteMany(filter, options)

db.<collection>.drop()  # delete whole collection
db.dropDatabase()  # delete entire database

Mongoimport Tool

Utility to import all docs into a specified collection.
If the collection alredy exists --drop deletes it before reuploading it. WARNING: CSV separators must be commas (,)

mongoimport -h <host:port> d <database> c <collection> --drop --jsonArray <souce_file>

mongoimport --host <HOST:PORT> --ssl --username <USERNAME> --password <PASSWORD> --authenticationDatabase admin --db <DATABASE> --collection <COLLECTION> --type <FILETYPE> --file <FILENAME>

# if file is CSV and first line is header
mongoimport ... --haderline

Mongoexport Tool

Utility to export documents into a specified file.

mongoexport -h <host:port> d <database> c <collection> <souce_file>

mongoexport --host <host:port> --ssl --username <username> --password <PASSWORD> --authenticationDatabase admin --db <DATABASE> --collection <COLLECTION> --type <FILETYPE> --out <FILENAME>

Mongodump & Mongorestore

mongodump exports the content of a running server into .bson files.

mongorestore Restore backups generated with mongodump to a running server.

Relations

Nested / Embedded Documents:

  • Group data locically
  • Optimal for data belonging together that do not overlap
  • Should avoid nesting too deep or making too long arrays (max doc size 16 mb)
{
    _id: Objectid()
    key: "value"
    key: "value"

    innerDocument: {
        key: "value"
        key: "value"
    }
}

References:

  • Divide data between collections
  • Optimal for related but shared data used in relations or stand-alone
  • Allows to overtake nidification and size limits

NoSQL databases do not have relations and references. It's the app that has to handle them.

{
    key: "value"
    references: ["id1", "id2"]
}

// referenced
{
    _id: "id1"
    key: "value"
}

Indexes

Indexes support the efficient execution of queries in MongoDB.

Without indexes, MongoDB must perform a collection scan (COLLSCAN): scan every document in a collection, to select those documents that match the query statement.
If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect (IXSCAN).

Indexes are special data structures that store a small portion of the collections data set in an easy to traverse form. The index stores the value of a specific field or set of fields, ordered by the value of the field. The ordering of the index entries supports efficient equality matches and range-based query operations. In addition, MongoDB can return sorted results by using the ordering in the index.

Indexes slow down writing operations since the index must be updated at every writing.

IXSCAN

Index Types

  • Normal: Fields sorted by name
  • Compound: Multiple Fields sorted by name
  • Multykey: values of sorted arrays
  • Text: Ordered text fragments
  • Geospatial: ordered geodata

Sparse indexes only contain entries for documents that have the indexed field, even if the index field contains a null value. The index skips over any document that is missing the indexed field.

Diagnosys and query planning

db.<collection>.find({...}).explain()  # explain won't accept other functions
db.explain().<collection>.find({...})  # can accept other functions
db.explain("executionStats").<collection>.find({...})  # more info

Index Creation

db.<collection>.createIndex( <key and index type specification>, <options> )

db.<collection>.createIndex( { <field>: <type>, <field>: <type>, ... } )  # normal, compound or multikey (field is array) index
db.<collection>.createIndex( { <field>: "text" } )  # text index
db.<collection>.createIndex( { <field>: 2dsphere } )  # geospatial 2dsphere index

# sparse index
db.<collection>.createIndex(
    { <field>: <type>, <field>: <type>, ... },
    { sparse: true }  # sparse option
)

# custom name
db.<collection>.createIndex(
  { <key and index type specification>, },
  { name: "index-name" }  # name option
)

Index Management

# view all db indexes
db.getCollectionNames().forEach(function(collection) {
   indexes = db[collection].getIndexes();
   print("Indexes for " + collection + ":");
   printjson(indexes);
});
db.<collection>.getIndexes()  # view collenction's index

db.<collection>.dropIndexes()  # drop all indexes
db.<collection>.dropIndex( { "index-name": 1 } )  # drop a specific index

Database Profiling

Profiling Levels:

  • 0: no profiling
  • 1: data on operations slower than slowms
  • 2: data on all operations

Logs are saved in the system.profile capped collection.

db.setProgilingLevel(n)  # set profiler level
db.setProfilingLevel(1, { slowms: <ms> })
db.getProfilingStatus()  # check profiler satus

db.system.profile.find().limit(n).sort( {} ).pretty()  # see logs
db.system.profile.find().limit(n).sort( { ts : -1 } ).pretty()  # sort by decreasing timestamp

Roles and permissions

Authentication: identifies valid users Authorization: identifies what a user can do

  • userAdminAnyDatabase: can admin every db in the istance (role must be created on admin db)
  • userAdmin: can admin the specific db in which is created
  • readWrite: can read and write in the specific db in which is created
  • read: can read the specific db in which is created
# create users in the current MongoDB instance
db.createUser(
    {
        user: "dbAdmin",
        pwd: "password",
        roles:[
            {
                role: "userAdminAnyDatabase",
                db:"admin"
            }
        ]
    },
    {
        user: "username",
        pwd: "password",
        roles:[
            {
                role: "role",
                db: "database"
            }
        ]
    }
)

Sharding

Sharding is a MongoDB concept through which big datasests are subdivided in smaller sets and distribuited towards multiple instances of MongoDB.
It's a technique used to improve the performances of large queries towards large quantities of data that require al lot of resources from the server.

A collection containing several documents is splitted in more smaller collections (shards) Shards are implemented via cluster that are none other a group of MongoDB instances.

Shard components are:

  • Shards (min 2), instances of MongoDB that contain a subset of the data
  • A config server, instasnce of MongoDB which contains metadata on the cluster, that is the set of instances that have the shard data.
  • A router (or mongos), instance of MongoDB used to redirect the user instructions from the client to the correct server.

Shared Cluster

Replica set

A replica set in MongoDB is a group of mongod processes that maintain the same dataset. Replica sets provide redundancy and high availability, and are the basis for all production deployments.

Aggregations

Sequence of operations applied to a collection as a pipeline to get a result: db.collection.aggregate(pipeline, options).

Aggragations Stages:

  • $lookup: Right Join
  • $match: Where
  • $sort: Order By
  • $project: Select *
  • ...

Example:

db.collection.aggregate([
    {
        $lookup: {
            from: <collection to join>,
            localField: <field from the input documents>,
            foreignField: <field from the documents of the "from" collection>,
            as: <output array field>
        }
    },
    { $match: { <query> } },
    { $sort: { ... } },
    { $project: { ... } },
    { ... }
])